NATANAEL SILVA RIBEIRO

NÚMERO: um recorte de sua viagem através dos tempos

CAMPINA GRANDE – PB
2017
NÚMERO: um recorte de sua viagem através dos tempos

Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção do título de Licenciatura Plena em Matemática ao Departamento de Matemática da Universidade Estadual da Paraíba, sob a orientação do professor Ms. Fernando Luiz Tavares da Silva.

CAMPINA GRANDE – PB
2017
R484n Ribeiro, Natanael Silva.
 55 p. : il. colorido.

 Digitado.
 Trabalho de Conclusão de Curso (Graduação em Matemática) - Universidade Estadual da Paraíba,
 Centro de Ciências e Tecnologia, 2017.
 "Orientação: Prof. Me. Fernando Luiz Tavares da Silva, Coordenação do Curso de Matemática - CCT."

21. ed. CDD 512.7
NATANAEL SILVA RIBEIRO

NÚMERO: um recorte de sua viagem através dos tempos

Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção do título de Licenciatura Plena em Matemática ao Departamento de Matemática da Universidade Estadual da Paraíba, sob a orientação do professor Ms. Fernando Luiz Tavares da Silva.

Aprovado em: 13 de dezembro de 2017

BANCA EXAMINADORA

Prof. Ms. Fernando Luiz Tavares da Silva
Universidade Estadual da Paraíba – UEPB
Orientador

Prof.ª. Ms. Kátia Suzana Medeiros Graciano
Universidade Estadual da Paraíba – UEPB
1ª Examinadora

Prof.ª. Ms. Maria da Conceição Vieira Fernandes
Universidade Estadual da Paraíba – UEPB
2ª Examinadora
Dedico este trabalho a Adalgisa Tertulina de Mendonça (in memoriam), minha querida avó que sempre desejou para mim um futuro brilhante e cheio de conquistas.
AGRADECIMENTOS

Agradeço a Deus por todas às coisas maravilhosas, por minha vida, por essa Natureza encantadora que nos rodeia, pelo Dom da Sabedoria, por poder viver momentos de alegria e felicidade.

Agradeço também pelas inúmeras oportunidades de fazer e receber o bem, de transferir e adquirir conhecimento, de conviver com pessoas especiais, realizar sonhos, alcançar objetivos e sentir na pele a emoção de viver. Faço proveito desse momento para também agradecer a estas pessoas:

À minha mãe Maria Risoneide de Mendonça Silva Ribeiro, por me segurar e me ensinar a dar os primeiros passos, por sempre me desejar o bem, me aconselhar e me ensinar a rezar, pelo carinho e companheirismo de toda uma vida.

Ao meu pai João Mendes Ribeiro, exemplo de garra e determinação.

Aos meus irmãos Rafael Silva Ribeiro e João Paulo Silva Ribeiro. Por terem me ajudado e me aconselhado nos momentos

À minha tia Maria José de Mendonça Silva (Dezinha) e ao seu esposo José Nilo da Silva. Muito obrigado por tudo o que já me fizeram.

À minha querida namorada Ingrid Renaly Marinho Dias, por incentivar e acreditar no meu sucesso.

Ao meu orientador professor Fernando Luiz Tavares da Silva, profissional exemplar, um verdadeiro mestre. Muito obrigado pelo apoio e contribuição na realização deste trabalho.

À professora Kátia Suzana Medeiros Graciano, coordenadora do curso de Licenciatura em Matemática e integrante da banca examinadora. Muito obrigado por sua atenção e ajuda.

À minha ex-professora de Desenho Geométrico e integrante da banca examinadora, professora Maria da Conceição Vieira Fernandes. Muito obrigado pelos ensinamentos.

Ao meu ex-professor e amigo Eduardo Barbosa da Silva, por sua contribuição e transmissão de conhecimentos durante o ensino fundamental e médio.

Aos meus amigos, e também professores, Elídio Raimundo da Silva Júnior e Eduardo André dos Santos.

Meu muito obrigado a todos!
“O princípio de tudo é o número”

(Pitágoras)
RESUMO

Apresentamos neste trabalho, de forma breve e sucinta, o **Número**. Partimos de um ambiente pré-histórico, percorrendo diversos lugares e conhecendo um pouco dos povos que, pouco a pouco, foram contribuindo para a construção do conceito de número. Ressaltamos que, tal conceito, não foi construído de imediato e nem por uma única pessoa, foram necessários milhares de anos e a essencial contribuição de homens que souberam compreender e aperfeiçoar este conceito em diferentes épocas. Neste sentido, desenvolvemos um texto interessante e curioso, objetivando levar ao conhecimento de professores e alunos o caminho milenar trilhado por uma das mais belas e espetaculares invenções do homem, o **número**. Fizemos isto dando ênfase aos grandes matemáticos, astrônomos e cientistas, que são figuras marcantes na História da Matemática e, em particular, na história da criação dos números. Mostramos através de alguns problemas clássicos e de fatos curiosos e importantes que surgiram desde a Antiguidade e percorreram esse longo período de tempo que, em sua jornada, os números atenderam às necessidades dos povos de cada época, por isso, cada tipo de número (**concretos**, **naturais/inteiros**, **fracionários/racionais**, **decimais**, **irracionais** e **negativos**), foram criados em diferentes épocas.

Palavras-chave: Número. Matemática. História dos números.
ABSTRACT

We present in this work, briefly and succinctly, the **Number**. We start from a prehistoric environment traveling for centuries through the ages, going through various places and getting to know some of the people who, little by little, were contributing to the construction of the concept of number. Not to mention that this concept was not built immediately and not by a single person, it took thousands of years and the essential contribution of men who knew how to understand and improve this concept at different times. In this sense, we developed an interesting and curious text, aiming to bring to the knowledge of teachers and students the millenarian path trodden by one of the most beautiful and spectacular inventions of man, the number. We did this by emphasizing the great mathematicians, astronomers, and scientists who are striking figures in the History of Mathematics and in particular in the history of number creation. We have shown through some classic problems and curious and important facts that have arisen since Antiquity and have covered this long period of time. In their journey, the numbers served the needs of the people of each age, so each type of number (**concrete**, **natural/integer**, **fractional/rational**, **decimal**, **irrational**, and **negative**), which are the **real numbers**, were created in different times.

Keywords: Number. Mathematics. History of numbers.
LISTA DE ILUSTRACOES

FIGURA 1: O Egito e o Rio Nilo ... 16
FIGURA 2: Piramides egipcias ... 17
FIGURA 3: Pedaço do Papiro Ahmes .. 18
FIGURA 4: Rio Nilo na Antiguidade ... 23
FIGURA 5: Conquistas romanas até 350 a.C. .. 26
FIGURA 6: Conquistas romanas até 200 a. C. 27
FIGURA 7: Conquistas romanas até 44 a. C. ... 27
FIGURA 8: Conquistas romanas até o fim do século II (máxima extensão do Império) .. 28
FIGURA 9: Índia ... 31
FIGURA 10: Evolução dos algarismos indo-arábicos 33
FIGURA 11: Triângulo retângulo .. 38
FIGURA 12: Triângulo retângulo ... 38
FIGURA 13: Triângulo retângulo com a relação de Pitágoras 39
FIGURA 14: Representação geométrica do teorema de Pitágoras 40
FIGURA 15: Representação geométrica do teorema de Pitágoras 41
FIGURA 16: Triângulo retângulo e isósceles ... 42
FIGURA 17: Cubo de arestas a ... 43
FIGURA 18: Cubo de arestas 2a .. 44
FIGURA 19: Quadrados inscritos e circunscritos em uma mesma circunferência 45
FIGURA 20: Exemplos de transformações de unidades do sistema métrico decimal 49
FIGURA 21: Representação dos números positivos e negativos na reta numérica 53
LISTA DE TABELAS

TABELA 1: Técnica de calcular dos egípcios ... 21
TABELA 2: Técnica de calcular dos egípcios ... 21
TABELA 3: Técnica de calcular dos egípcios ... 22
SUMÁRIO

1. APRESENTAÇÃO ... 13
2. O NÚMERO CONCRETO .. 14
3. O NÚMERO NATURAL .. 16
 3.1 Os papíros da Matemática egípcia ... 17
 3.2 A técnica de calcular dos egípcios ... 20
 3.3 A descoberta das frações egípcias .. 23
 3.4 O sistema de numeração romano .. 28
 3.5 O sistema de numeração decimal ... 31
 3.6 Os números racionais ... 35
4. O NÚMERO IRRACIONAL .. 37
 4.1 Um pouco sobre Pitágoras .. 37
 4.2 O teorema de Pitágoras ... 38
 4.3 Os primeiros números irracionais .. 40
 4.4 Um pouco sobre Euler ... 47
 4.5 A fração decimal .. 48
5. O NÚMERO NEGATIVO .. 51
 5.1 O número negativo dos comerciantes .. 52
6. CONSIDERAÇÕES .. 54
 REFERÊNCIAS .. 55
1. APRESENTAÇÃO

A missão de educar, diante dos múltiplos e variados desafios que hoje se apresentam, deve desenvolver e consolidar habilidades que propiciem ao educando condições de adquirir conhecimentos a fim de que como futuro profissional nos mais diversos ramos de atuação, possa oferecer para a sociedade um trabalho digno e competente.

Por seu forte caráter integrador e interdisciplinar, a Matemática contribui para essa formação. Tal contribuição se consolida ainda mais na medida em que, além de valorizar apenas seus importantes algoritmos de resoluções, possibilite em paralelo um ganho cultural através de ações que explorem aspectos históricos, oportunizando com isso, um olhar comparativo, reflexivo, dedutivo sobre entes matemáticos, como por exemplo, os números, que surgiram há milhares de anos atrás e estão presentes nas atividades da espécie humana até os dias atuais.

Nesse sentido, longe de querer contemplar a importância dos números através dos séculos em aproximadas 50 páginas, produzimos um pequeno recorte com um roteiro de leitura fácil, agradável e interessante, exemplificando tanto para o professor quanto para o aluno que é possível, desde que se queira, possibilitar uma visão mais abrangente sobre um determinado conteúdo a ser estudado.

Com votos de uma prazerosa e proveitosa leitura, oferecemos a você leitor

Número: um recorte de sua viagem através dos tempos.
2. O NÚMERO CONCRETO

Segundo Boyer (1974), desde a Era da Pré-História o homem já tinha à necessidade de contar objetos, animais mortos em uma caçada, os peixes capturados nas águas, os frutos, os ovos, as raízes, sementes, e etc. Por sua vez, todos esses alimentos eram usados para a sobrevivência do homem, a qual não era nada fácil em meio aos animais selvagens, ao frio, à chuva e a falta de moradias.

Nessa época, por volta de trinta mil anos atrás, a humanidade ainda não havia descoberto os números, por isso, para contar seus pertences usavam os dedos das mãos, algumas pedrinhas, os nós de uma corda, riscos em pedaços de madeira, marcas em ossos de animais mortos, entre outros meios.

Há cerca de dez mil anos atrás, as coisas foram mudando, o homem começava a criar seus próprios animais e a cultivar plantas que lhe serviam como alimento. Dava-se início à agricultura, foi a partir daí que o homem deixou de viver mudando-se de um lugar para outro e começou a situar-se em um lugar definitivo, facilitando o cultivo das plantas e a criação de seus animais.

Como contar as ovelhas de um rebanho, por exemplo? Ora, o pastor associava cada ovelha a uma pedrinha, assim: de manhã cedo, quando soltava as ovelhas para pastar, ele ficava de olhos bem atentos na saída do aprisco para conferir seu rebanho, a cada ovelha que saía correspondia uma pedra colocada dentro de um saquinho, no final do dia o processo era desfeito, a cada ovelha que entrava no aprisco o pastor retirava uma pedra do saquinho. Dessa forma, a contagem do rebanho era feita diariamente.

As contas com pedras eram normais nesses tempos primitivos, hoje temos um ramo da Matemática chamado Cálculo, que em Latim significa contas com pedras.

O conceito de número começava a ser construído dessa maneira, contando objetos com outros objetos. O homem relacionava os números, mesmo sem ainda os conhecer, com coisas concretas: o número dois, por exemplo, estava ligado a duas pedras, dois peixes, duas ovelhas, dois ossos, etc.

Mas a ideia principal da forma de contagem nessa época era o agrupamento de cinco em cinco, ligado certamente aos cinco dedos das mãos. Desse modo, os pastores de ovelhas contavam-as separando as pedrinhas em grupos de cinco em cinco, bem como os caçadores e os pescadores faziam marcas em varas, ossos ou nós numa corda, também separados em grupos de cinco em cinco para contar os animais capturados.
Foi desse modo, associando animais e objetos a coisas concretas, que lá na Pré-História surgiu o conceito de **número concreto**.
3. O NÚMERO NATURAL

Com o passar do tempo, o homem descobriu o fogo, aprendeu a cozinhar seus próprios alimentos, proteger-se do frio e descobrir coisas novas.

Grupos de pessoas que viviam situados às margens de rios e lagos tornaram-se povoados e aldeias, que logo em seguida, transformaram-se em cidades. Devido ao desenvolvimento do comércio, foram surgindo novas profissões, além de caçadores pescadores e agricultores as pessoas tornaram-se: carpinteiros, comerciantes, artesãos, sacerdotes, administradores, e, entre outros, os estudiosos da época, que criaram uma nova forma de se comunicar, a escrita. Isso ocorreu por volta do ano 4000 a.C., foi aí então o fim da Pré-História e o começo da História.

Figura 1 – O Egito e o Rio Nilo

Foi no Antigo Egito onde o fim da Pré-História trouxe grandes progressos para o desenvolvimento da indústria e do comércio. Os egípcios não conseguiam fazer os projetos de construção das pirâmides e dos templos utilizando o número concreto, era um processo praticamente impossível, pois não havia como efetuar cálculos precisos com pedras, nós em uma corda ou riscos em pedaços de madeira. (GUELLI, 1992).
Figura 2 – Pirâmides Egípcias

Fonte: GUELLI, 1992, p. 16.

A partir de então, os estudiosos do Antigo Egito se depararam com a necessidade de representarem qualquer tipo de quantidades de objetos de uma coleção por meio de desenhos, os símbolos. Foi graças a essa criação espetacular dos egípcios que a Matemática começou a se desenvolver intensamente.

O homem primitivo, para realizar uma operação, precisava juntar objetos concretos, tipo: 4 pedras com 6 pedras obtendo assim 10 pedras.

Atualmente podemos indicar essa operação por meio dos símbolos:

\[4 + 6 = 10 \]

Não importa se estamos representando 10 pedras, 10 nós ou 10 bastões, a operação pode ser feita da mesma maneira. Mas não foram esses símbolos acima (os algarismos do nosso sistema de numeração decimal) que os egípcios criaram para representar os números.

Há cerca de 3 600 anos atrás, o faraó do Egito, tinha um súdito chamado Aahmesu, nome que na língua egípcia significava “filho da lua”.

Aahmesu provavelmente era um escriba e ocupava na sociedade egípcia uma posição muito mais humilde do que a do faraó. Foi ele quem escreveu o papiro Ahmes, por esta razão, é mais conhecido do que muitos reis e faraós do Antigo Egito.

3.1 Os papiros da Matemática egípcia
Quase tudo o que sabemos sobre a Matemática dos antigos egípcios se baseia em dois grandes papiros: o Papiro Ahmes e o Papiro de Moscou. O primeiro foi escrito por volta de 1650 a.C. e tem aproximadamente 5,5 m de comprimento e 32 cm de largura. Foi comprado em 1858 por um antiquário escocês chamado Henry Rhind. Por isso é conhecido também como Papiro de Rhind. Atualmente encontra-se no British Museum, de Londres. O Papiro de Moscou é uma estreita tira de 5,5 m de comprimento por 8 cm de largura, com 25 problemas. Encontra-se atualmente em Moscou. Não se sabe nada sobre seu autor. (GUELLI, 1992, p.17).

O Papiro Ahmes contém 80 problemas, todos resolvidos. Grande parte são problemas do cotidiano, envolvendo o preço das mercadorias, a forma de alimentar os animais, a maneira de dividir as terras, a armazenagem de grãos de trigo, etc.

Figura 3 – Pedaço do Papiro Ahmes

![Pedaço do Papiro Ahmes](image)

Foi a partir da observação do Papiro Ahmes que os cientistas compreenderam o sistema de numeração egípcio. Eles estudaram como eram efetuados os cálculos e, além do mais, decifram os *hieróglifos* (inscrições sagradas das tumbas e monumentos do Egito).

O sistema de numeração egípcio baseava-se em sete símbolos-chave, cada um deles representava os números do quadro a seguir:

```
1   10  100  1.000  10.000
100.000  1.000.000
```
Um traço vertical representava 1 unidade:

Um osso de calcanhar invertido representava o número 10:

Um laço valia 100 unidades:

Uma flor de lótus valia 1.000:

Um dedo dobrado valia 10.000:

Com um girino os egípcios representavam 100.000 unidades:

Uma figura ajoelhada, talvez representando um deus, valia 1.000.000:

Como veremos a seguir, os demais números eram obtidos combinando-se os sete símbolos-chave:

Dessa forma, o ano em que os portugueses descobriram o Brasil (1500), por exemplo, seria representado pelos egípcios com uma flor de lótus e cinco laços:

A ordem dos símbolos que os egípcios usavam não importava nem um pouco, ao contrário do nosso sistema de numeração decimal **posicional**, no qual a ordem dos algarismos é de fundamental importância.
Tomando como exemplo o número 125 e fazendo todas as permutações possíveis com seus algarismos, sem repeti-los, obteremos outros números totalmente diferentes, vejamos:

\[152 \quad 251 \quad 215 \quad 512 \quad 521 \]

Para os egípcios, essas seis maneiras que escrevemos esses números, tinham o mesmo valor.

Assim,

- \[125 = 1 + 2 + 5 = 8; \]
- \[152 = 1 + 5 + 2 = 8; \]
- \[251 = 2 + 5 + 1 = 8; \]
- \[215 = 2 + 1 + 5 = 8; \]
- \[512 = 5 + 1 + 2 = 8; \]
- \[521 = 5 + 2 + 1 = 8. \]

3.2 A técnica de calcular dos egípcios

O sistema de numeração egípcio foi muito útil em sua época, pois, além de servir para contar coisas e objetos, os egípcios desenvolveram uma incrível técnica para efetuar todos os cálculos que envolvessem números naturais. Com essa técnica de calcular muito linda e eficiente, eles conseguiam efetuar todas as operações matemáticas através de uma adição. Vejamos dois exemplos de multiplicação, a fim de entendermos melhor o funcionamento dessa técnica.

Efetuaremos aqui o produto 12 \(\cdot \) 8; isto quer dizer que o número 8 será adicionado 12 vezes, assim:

\[12 \cdot 8 = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 \]

Agora, vamos dobrar o número de parcelas:

- 1 parcela, totaliza: 8
- 2 parcelas, totalizam: \(8 + 8 = 16 \)
- 4 parcelas, totalizam: \(16 + 16 = 32 \)
- 8 parcelas, totalizam: \(32 + 32 = 64 \)

Observando a tabela a seguir, conseguimos entender a perfeição com a qual funcionava a técnica dos egípcios:
Tabela 1 – Técnica de calcular dos egípcios.

<table>
<thead>
<tr>
<th>Parcelas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
</tbody>
</table>

Fonte: Elaborada pelo autor

Basta buscarmos na tabela um total de 12 parcelas, isto é, a soma das duas últimas colunas destacadas na cor cinza:

$$4 + 8 = 12$$

Dessa forma, o produto $12 \cdot 8$ é a soma dos totais das colunas destacadas em verde:

$$32 + 64 = 96$$

Agora, calcularemos outro produto, desta vez $7 \cdot 19$. Desse modo, teremos:

$$7 \cdot 19 = 19 + 19 + 19 + 19 + 19 + 19 + 19$$

Dobrando o número de parcelas,

- 1 parcela, resultado: 19
- 2 parcelas, resultado: $19 + 19 = 38$
- 4 parcelas, resultado: $38 + 38 = 76$
- 8 parcelas, resultado: $76 + 76 = 152$

Montando a tabela:

Tabela 2 – Técnica de calcular dos egípcios.

<table>
<thead>
<tr>
<th>Parcelas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>152</td>
</tr>
</tbody>
</table>

Fonte: Elaborada pelo autor
Como queremos 7 parcelas de 19, o resultado vai ser a soma das três primeiras colunas destacadas em cinza, ou seja:

\[
1 + 2 + 4 = 7
\]

Logo, o produto \(7 \cdot 19\) será dado pela soma dos totais destacados na cor verde, ou seja:

\[
19 + 38 + 76 = 133
\]

Vale ressaltar que, o que fizemos aqui nesses dois exemplos foi um breve esboço do caminho seguido pelos egípcios para a realização de cálculos tão precisos, pois, naquela época ainda não existiam os símbolos que usamos hoje, bem como os sinais de operações básicas: \(+, -, \times, \div, =\), etc.

Para um melhor entendimento, efetuaremos agora uma nova multiplicação, desta vez, empregando os símbolos egípcios. Faremos isto de forma breve e sucinta, através de uma tabela. Vejamos!

Tabela 3 – Técnica de calcular dos egípcios.

![Tabela 3](image)

Fonte: Elaborada pelo autor

De forma análoga ao que fizemos nos exemplos anteriores, os egípcios somavam as colunas em destaque, claramente podemos ver que o resultado será doze. Assim:

![Imagem do cálculo]

Em seguida, os egípcios somavam os totais que correspondiam às colunas destacadas e faziam as substituições dos símbolos de menor valor por outros de maior valor:
Observando bem a tabela 3, verificamos de imediato que a primeira célula na coluna das parcelas está representando a parcela 1, que tem como resultado na coluna dos totais o valor 12, e como a soma das células destacadas em amarelo também é 12, concluímos que trata-se de uma multiplicação $12 \cdot 12 = 144$.

Foi dessa forma, criando esse belo sistema de numeração que os egípcios deram uma grande contribuição para a matemática, mas ainda não era o suficiente, eles se deparavam com vários problemas do cotidiano que não dava para serem resolvidos utilizando aqueles símbolos que representavam apenas quantidades inteiras.

Mas os egípcios eram mesmo muito inteligentes, por esta razão, deram a volta por cima e conseguiram criar novos números com os quais puderam expressar parte de um inteiro, um pedaço de alguma coisa, a quantidade de vezes que uma unidade de medida estava contida no lado de um terreno, já que dificilmente tal lado tinha uma medida inteira.

3.3 A descoberta das frações egípcias

Desde a Antiguidade, durante o mês de junho, as águas do Rio Nilo sobem e fertilizam as terras situadas às suas margens, em setembro estas águas voltam a baixar deixando uma vasta faixa de terras planas e férteis que são muito preciosas para o cultivo.

Figura 4 – Rio Nilo na Antiguidade

Fonte: GUELLI, 1992, p. 22.
Dessa maneira, a agricultura do Antigo Egito se expandiu intensamente, trazendo farturas e riquezas ao vale do Nilo, o que possibilitou o grande desenvolvimento da civilização egípcia.

Tudo isso ocorreu em torno do ano 3000 a.C., nessa época existia um antigo faraó chamado Sesástres. Tal faraó, dividiu as terras férteis e preciosas do vale do Nilo entre alguns agricultores privilegiados. Estas terras eram muito bem cuidadas, todas rodeadas por cercas construídas de pedras pelos próprios agricultores, delimitando a parte de cada um.

Todos os anos, durante o período de cheias, as águas do Nilo inundavam aquelas terras, derrubando as cercas de pedra. Quando as águas baixavam, os funcionários do governo iam de imediato traçar novamente os limites de terra de cada agricultor, já que cada metro de terra era muito precioso.

As medições eram feitas com uma corda. Nesta corda eram feitos nós que a separavam em unidades de medida aproximadamente iguais. Os estiradores de corda, que eram os funcionários do governo, esticavam a corda ao longo dos lados do terreno e verificavam quantas vezes aquela unidade de medida estava contida nos lados do terreno.

Entretanto, aquela unidade de medida adotada raramente cabia um número inteiro de vezes nos lados do terreno. Foram problemas como esses, que levaram esse povo a contribuírem mais um pouco com a matemática, dessa forma os egípcios criaram os números fracionários.

Os números fracionários eram representados por frações. Os egípcios usavam apenas frações unitárias, ou seja, de numerador 1.

Por incrível que pareça, o símbolo usado para representar o numerador 1, não era o traço vertical, que representava uma unidade, e sim um sinal oval alongado sobre o denominador, como podemos observar a seguir:

![Frações egípcias](image)

Para escrever outras frações com numerador diferente de um, era feita uma soma de frações unitárias. A fração $\frac{3}{4}$ era escrita através da soma:

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{6}$$

Fazendo um simples cálculo para chegarmos a um denominador comum, verificamos que m.m.c $(3, 4, 6) = 12$ e operando como de costume, obtemos:
\[
\frac{1}{3} + \frac{1}{4} + \frac{1}{6} = \frac{4}{12} + \frac{3}{12} + \frac{2}{12} = \frac{9}{12} = \frac{3}{4}
\]

Hoje em dia, somos acostumados a fazer uma decomposição como esta, da forma mais trivial possível, simplismente poderíamos optar por escrever:

\[
\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}
\]

Mas os egípcios muitas vezes não pensavam assim, talvez porque os problemas por eles resolvidos fossem em sua grande maioria, voltados para divisões territoriais entre herdeiros ou algo parecido, possibilitando assim, a decomposição de uma fração em uma soma de frações de denominadores diferentes. Com os símbolos egípcios, a fração \(\frac{3}{4}\) era representada assim:

![Imagem de fração egípcia]

Os egípcios não usavam o sinal de adição \(+\) entre as frações, pois, os símbolos das operações ainda não tinham sido inventados.

Tomando agora a fração \(\frac{2}{5}\) como exemplo, podemos observar que o caminho mais fácil para se fazer uma decomposição como esta seria escrevermos:

\[
\frac{1}{5} + \frac{1}{5}
\]

Porém, não é nada fácil conseguirmos descobrir que ela também pode ser expressa por meio da soma de \(\frac{1}{15}\) e \(\frac{1}{3}\).

De fato,

\[
\frac{1}{15} + \frac{1}{3} = \frac{1}{15} + \frac{5}{15} = \frac{6}{15} = \frac{2}{5}
\]

Já na notação egípcia era representada assim:

![Imagem de fração egípcia]

Tanto os cálculos com as frações egípcias quanto com números inteiros eram muito difíceis, pois, além da ordem posicional dos símbolos não importar, eles repetiam-se com muita frequência.

Para se ter uma ideia, vamos expressar o número \(2348\) na notação egípcia, a fim de vermos a quantidade de símbolos empregados:

![Imagem de número egípcio]
Foram usados 17 símbolos para representar a mesma quantidade que podemos expressar hoje por meio de 4 algarismos. Isso nos mostra que trabalhar com os símbolos egípcios era uma missão árdua.

Assim como os egípcios, outras civilizações também desenvolveram seu próprio sistema de numeração, representar quantidades por símbolos já ia se tornando uma coisa comum entre os povos da Antiguidade.

Entretanto, o problema maior sempre aparecia no momento da efetuação dos cálculos, fazer uma operação de adição, por exemplo, era simples, mas se a operação tratava-se de uma multiplicação, uma subtração ou uma divisão com os símbolos egípcios, a coisa não fluia muito bem.

Passaram-se séculos e matemáticos do mundo inteiro sentiam a necessidade de criarem um sistema de numeração mais prático e eficiente. Há cerca de 300 a.C começou a se formar um sistema de numeração diferente de todos os outros, esse sistema teve origem na civilização mais importante da Antiguidade, a civilização romana.

O centro dessa civilização era a cidade de Roma. Desde sua fundação, em 753 a.C., até ser ocupada por povos estrangeiros em 476 d.C., seus habitantes enfrentaram um imenso número de guerras. Primeiro, para se defenderem dos ataques de povos vizinhos, em seguida, nas conquistas de novas terras.

A sequência de mapas a seguir, mostra como ocorreu a expansão do Império romano:

Figura 5: Conquistas romanas até 350 a.C.

Figura 6 – Conquistas romanas até 200 a.C.

Figura 7 – Conquistas romanas até 44 a.C. (morte de César)

Fonte: GUELLI, 1992, p. 27.
Os romanos conseguiram conquistar a Península Itálica, o restante da Europa, parte da Ásia e o norte da África. Embora tivessem alcançado uma expansão gigantesca, a maioria da população romana vivia na miséria, enquanto sua minoria vivia em Roma usufruindo de luxo e riqueza. De vestes de luxo, grandes festas, joias e comidas refinadas vivia a elite romana.

O número concreto desde o tempo das cavernas vinha se desenvolvendo e se aperfeiçoando entre todos os povos, inclusive entre os romanos. Como há cerca de 300 a.C., eles já conheciam a escrita, fizeram diferente dos egípcios, não foram em busca de criar novos símbolos para representar os números, eles usaram as próprias letras do alfabeto para formar um brilhante sistema de numeração.

3.4 O sistema de numeração romano

Assim como os egípcios, os romanos também usaram sete símbolos-chave para representar os números:
Os romanos atribuíram a esses sete símbolos os seguintes valores para formar o seu sistema de numeração:

- **I** representava 1 unidade.
- **V** valia 5.
- **X** valia 10.
- **L** representava 50 unidades.
- **C** indicava 100 unidades.
- **D** valia 500.
- **M** valia 1000.

Para representar um número de maior valor, os romanos usavam no máximo três vezes o mesmo símbolo, e somavam os seus valores. Por exemplo:

\[
\text{III} = 1 + 1 + 1 = 3 \\
\text{XXX} = 10 + 10 + 10 = 30
\]

Entretanto, para representar o número 4 e o número 40, por exemplo, os romanos não usavam **III** nem **XXXX**, como faziam os egípcios que usavam quatro traços verticais e quatro ossos de calcanhar invertidos.

Os romanos foram espertos e usaram a adição e a subtração na representação de seus números. Quando dois números diferentes apareciam juntos, sendo que o menor vinha antes do maior, eles subtraíam os seus valores.

\[
\text{IV} = 4, \text{ pois } 5 - 1 = 4 \\
\text{XL} = 40, \text{ pois } 50 - 10 = 40 \\
\text{IX} = 9, \text{ pois } 10 - 1 = 9
\]

Caso contrário, se o número maior vinha antes do menor, eles somavam os seus valores.

\[
\text{VI} = 6, \text{ pois } 5 + 1 = 6 \\
\text{LX} = 60, \text{ pois } 50 + 10 = 60 \\
\text{XI} = 11, \text{ pois } 10 + 1 = 11
\]

Dessa forma, os romanos representavam todos os números inteiros, mas, muitas vezes, era preciso até fazer cálculos para ler um número mais elevado, por exemplo, o número **CDXLVIII**:

- Primeiramente, eles determinavam a letra de maior valor.
 \[
 \text{D} = 500
 \]
- Depois subtraíam de D o valor da letra que vem antes.
 \[
 \text{CD} = 500 - 100 = 400
 \]
Em seguida, determinavam a segunda letra de maior valor.
\[L = 50 \]
Novamente, subtraíam de L o valor da letra que vem antes.
\[XL = 50 - 10 = 40 \]
Somavam o valor de XL ao valor de CD, pois XL está depois de CD.
\[CD + XL = 400 + 40 \]
Finalmente, sobrava apenas VIII, que representava 8 unidades e podia ser adicionado depois da segunda letra de maior valor. Logo:
\[CDXLVIII = 400 + 40 + 8 = 448 \]
Como foi visto anteriormente a letra M representa 1000 unidades. De forma análoga, MM e MMM representam respectivamente 2000 e 3000 unidades. Mas, para escrever 4000 ou números maiores que ele, os romanos usavam um traço horizontal sobre as letras que representavam esses números. Assim:

Um traço multiplicava o número representado abaixo dele por 1000, já dois traços sobre o M atribuía-lhe o valor de 1 milhão. Vejamos:
\[\overline{XL} = 1050 \]
\[\overline{XVD} = 15500 \]
\[\overline{CLD} = 100450 \]
\[\overline{M} = 1000000 \]
\[\overline{MMCLXXX} = 2100080 \]

Sem dúvidas, o sistema de numeração romano foi mais além do que o egípcio, mas na hora de efetuar cálculos com operações básicas, surgiam novamente as mesmas dificuldades. Apesar disso, muitos povos da Antiguidade adotaram esse sistema.

Os romanos passaram perto de criar um sistema de numeração espetacular, mas os detalhes que faltaram fizeram total diferença, coisas como a criação de um símbolo que representasse uma posição vazia, a ordem posicional dos símbolos e as classes de agrupamento desses símbolos teriam sido fundamentais. Mesmo assim, a matemática não parou de se expandir intensamente entre todos os povos.
Matemáticos do mundo inteiro sentiam a falta de um sistema de numeração mais prático e eficiente na hora de calcular. Por isso, a procura por símbolos que fornecessem um sistema de numeração mais completo, era grande e intensa.

3.5 O sistema de numeração decimal

Depois de passarem alguns séculos, o desenvolvimento comercial e industrial crescia exponencialmente, havia uma enorme necessidade de contar as coisas com mais eficácia e confiança, fazer medições precisas e com maior rapidez, e, principalmente, fazer cálculos engenhosos, cálculos estes que não funcionavam muito bem com os sistemas de numeração criados até então.

Por estas razões, os estudiosos e sábios da Antiguidade se empenharam muito em busca de novos métodos de cálculo, mas não foram os egípcios nem os romanos que conseguiram alcançar essa façanha, uma das invenções mais brilhantes e importantes de toda a História da Matemática foi descoberta na Índia. Foram os povos hindus quem criaram o **sistema de numeração decimal**.

Figura 9:

![Mapa do mundo](image)

Na Síria, durante o século VI, foram fundados centros de cultura grega que funcionavam somente para discutir a arte e a cultura originárias da Grécia. Em 662, o bispo sírio Severus Sebokt, quando participava de uma conferência num desses centros, ficou muito bravo, pois só ouvia as pessoas elogiarem qualquer coisa vinda dos gregos, então, exclamou em alto e bom som:

“Existem outros povos que também sabem alguma coisa! Os hindus, por exemplo, têm valiosos métodos de cálculos. São métodos fantásticos! E imaginem que os cálculos são feitos por meio de apenas nove sinais!”

No início, o brilhante sistema de numeração hindu contava com apenas nove símbolos, como mencionou o bispo sírio em suas palavras. Isso quer dizer que o sistema de numeração hindu ainda não estava completo, pois faltava a criação de um símbolo que representasse uma casa vazia. Somente no final do século VI, aconteceu a invenção do zero, símbolo que foi representado por eles através de um ovo de ganso, redondo.

Dessa forma, depois que os hindus introduziram o décimo símbolo para representar o zero, o sistema de numeração decimal ficou completo. Tal símbolo levou séculos para chegar ao conhecimento dos europeus que, até então, só conheciam os outros nove. Vale ressaltar que os símbolos criados pelos hindus não eram escritos da forma pela qual os conhecemos hoje, ao longo do tempo eles passaram por várias transformações até chegarem a sua forma atual.

Atualmente, esses símbolos são chamados de algarismos indo-arábicos. A expressão algarismos indo-arábicos está ligada a dois fatores: primeiro, aos países da Índia e da Arábia, pois, apesar de os hindus terem criado o sistema de numeração decimal, foram os árabes quem o divulgaram ao mundo. Segundo, ao maior matemático árabe de todos os tempos, al-Khwarizmi, que em latim significa algorismus. E assim surgiu o nome algarismo.

A sequência hierárquica a seguir, nos dar uma ideia de como ocorreram essas transformações:
Durante os anos de 786 até 809 os povos árabes viveram sob o comando Harumal-Raschid, considerado o califa de Bagdá. Durante esse período, esses povos enfrentaram muitas guerras, em sua maior parte, guerras de conquistas.

A recompensa que esses povos ganhavam por participarem dessas guerras era tomar conhecimento de livros vindos dos maiores centros científicos existentes na época, tais livros eram trazidos para Bagdá e traduzidos para língua árabe.

A partir de 809, o califa de Bagdá passou a ser al-Mamum, filho de Harum al-Raschid.
Al-Mamum se achava super inteligente e gostava muito da ciência, por esta razão, queria tornar Bagdá o maior centro científico do mundo, contratando os grandes sábios muçulmanos da época. Entre eles o grande matemático árabe al-Khowarizmi.

Al-Khowarizmi se surpreendeu quando estava estudando os livros de matemática vindos da India e traduzidos para língua árabe, ficou perplexo ao ver pela primeira vez aqueles símbolos que aparentavam ser estranhos e confusos. Mas, logo após se aprofundar mais um pouco naquele trabalho genial desenvolvido pelos hindus, ele pôde compreender que todos os cálculos seriam feitos de um modo mais rápido, prático e seguro.

O que al-Khowarizmi jamais imaginou foi que aqueles símbolos estudados por ele e divulgados para todo o mundo, através de um livro chamado Sobre a arte hindu de calcular, seriam de suma importância para o desenvolvimento exponencial que a Matemática teve nos séculos seguintes. Por isso os símbolos criados pelos hindus foram chamados posteriormente de algarismos em homenagem ao seu nome, como já enfatizamos no finalzinho da página 33.

Al-Khowarizmi, ao escrever o livro, Sobre a arte hindu de calcular, fez com que matemáticos de todo o mundo passassem a conhecer o sistema de numeração hindu, ele passou a expressar seus símbolos com a notação que conhecemos hoje.

0 1 2 3 4 5 6 7 8 9

E explicou com detalhes o funcionamento desse sistema de numeração. Se observarmos os exemplos a seguir, podemos compreender como funcionam os conceitos de ordem, posição e classe, que são os elementos base do nosso sistema de numeração decimal posicional.

✓ Cada um dos símbolos representa uma ordem no número:

10 — tem duas ordens.
1587 — tem quatro ordens.
4 025 630 254 — tem dez ordens.

✓ Para contar quantidades maiores que dez, muda-se a posição do símbolo e ele muda de valor. Vejamos o que acontece se tomarmos o símbolo 5:

25 — neste caso, o símbolo destacado tem o valor de 5 unidades.
758 — neste caso, o mesmo símbolo agora passa a ter o valor de 50 unidades.
2546 — agora o símbolo destacado assume o valor de 500 unidades.
5 000 000 — tem o valor de 5 000 000 de unidades.
Por fim, para tornar fácil a leitura dos números, as ordens foram agrupadas de 3 em 3, da direita para a esquerda. Por sua vez, cada três ordens forma uma classe. Vejamos, em cada número a classe formada por 123:

123 – forma a classe das unidades.
4 123 458 – forma a classe dos milhares.
123 254 000 – forma a classe dos milhões.

Os árabes, ao se expandirem por todo o Mediterrâneo, formaram reinos na região da Península Ibérica que atravessaram séculos. Elles contribuíram muito para a Europa, introduzindo novas técnicas agrícolas, como construção de canais e açudes.

Além de produtos como a cana-de-açúcar, o arroz, a laranja e o limão, eles também trouxeram invenções de outros povos, como por exemplo, a bússola, a pólvora e o papel, que são invenções chinesas.

O sistema de numeração hindu possibilitou escrever números grandes com muita facilidade e praticidade.

O que fizemos até aqui, foi conhecer um pouco sobre o surgimento de um sistema de numeração criado pela necessidade que o homem tinha de contar as coisas da natureza. Por isso, esse conjunto de números passou a chamar-se números naturais.

Os números naturais, deram grande contribuição no trabalho envolvendo frações. Poder expressar partes de um inteiro tornou-se algo fácil de se representar utilizando os números naturais, como veremos a seguir.

3.6 Os números racionais

A partir de então, para se representar uma fração, não era mais preciso utilizar uma adição de dois números fracionários, como faziam os egípcios.

O número fracionário passou a ser expresso como uma razão de dois números naturais. Por exemplo, hoje representamos a fração \(\frac{5}{6} \) por meio da razão entre os números naturais 5 e 6. Os egípcios para representarem esta mesma fração, como já foi visto anteriormente, efetuavam a soma das frações unitárias \(\frac{1}{2} \) e \(\frac{1}{3} \).
A palavra razão significa, em Matemática, divisão, quociente. Assim, a razão de um número \(a\) para um número \(b\) (\(b\) diferente de 0) é dada pelo quociente \(\frac{a}{b}\).

Todo número inteiro pode ser escrito na forma de fração, por exemplo:

\[
\frac{2}{2} = 1 \quad \frac{8}{4} = 2 \quad \frac{15}{5} = 3
\]

Portanto, os números inteiros e os números fracionários podem ser expressos como uma razão de dois números naturais. Por isso, são chamados de **números racionais**.

Os matemáticos da época ficaram alegres e bem satisfeitos com suas descobertas, durante muito tempo pensavam que os dois tipos de números – naturais e fracionários – eram suficientes para resolver qualquer tipo de problema prático. Por isso, não sentiam necessidade de lidar com nenhum outro tipo de número.
4. O NÚMERO IRRACIONAL

4.1 Um pouco sobre Pitágoras

O matemático e filósofo grego, Pitágoras de Samos, nasceu na ilha de Samos, perto de Mileto, onde cinquenta anos antes tinha nascido Tales. Pitágoras em suas viagens esteve no Egito, na Babilônia e talvez na Índia, observou os conhecimentos matemáticos, a religião e a cultura de cada região. (LIMA, 2013, p.70).

Por volta do ano 530 a.C., retornando ao mundo grego, fundou em Crotona – sudeste da Itália de hoje – uma escola que funcionava como uma espécie de sociedade secreta, dedicada ao estudo da Matemática e da Filosofia, na qual Pitágoras era o mestre. Os grandes estudiosos da época que integravam esta sociedade eram chamados de pitagóricos.

Segundo Guelli (1992), para Pitágoras, qualquer fato da natureza podia ser explicado por meio dos números naturais. Pitágoras e seus discípulos, não se preocupavam em obter resultados práticos com seus estudos, eles lidavam com os números de várias maneiras, os pitagóricos descobriram ao longo desses intensos estudos algumas propriedades interessantes.

Segundo Pitágoras, um número podia ser classificado em perfeito, deficiente ou excessivo. Isso dependeria da soma dos fatores desse número. Tais fatores são os divisores naturais do número, cujo resto é igual a zero.

Assim por exemplo,

✓ O número 6 é perfeito, pois a soma de seus fatores (ou divisores naturais) que deixam resto zero, com exceção dele mesmo, é o próprio 6. De fato, seus fatores são 1, 2, 3 e 6. Portanto:

\[1 + 2 + 3 = 6 \]

✓ O número 10 é deficiente, pois a soma de seus fatores, com exceção dele mesmo, é menor que 10. Ora, seus fatores são 1, 2, 5 e 10. Daí:

\[1 + 2 + 5 = 8 \]

✓ O número 18 é excessivo, pois a soma de seus fatores, com exceção dele mesmo, é maior que 18. Os fatores de 18 são: 1, 2, 3, 6, 9 e 18, verificando:

\[1 + 2 + 3 + 6 + 9 = 21 \]

Vale ressaltar que os números perfeitos são difíceis de serem encontrados, o próximo número com estas características é o 28. Por outro lado, os números deficientes ou excessivos aparecem com muita frequência.
O que fez de Pitágoras um dos mais famosos personagens na história da Matemática não foi a descoberta dessas curiosidades que acabamos de ver, foi a demonstração de um teorema, talvez o mais conhecido de todos os tempos.

Pitágoras foi uma figura obscura na história da Matemática e a sua escola, além de secreta, era comunitária, isto é, todas as descobertas naquela época eram comuns, pertenciam a todos que a integravam. Dessa forma, não se sabe se foi o próprio Pitágoras que descobriu o teorema batizado com o seu nome ou se foi um de seus alunos, pois naquela época qualquer descoberta era atribuída ao mestre.

4.2 O teorema de Pitágoras

Chama-se **triângulo retângulo**, qualquer triângulo que tem um ângulo reto.

Figura 11 – Triângulo retângulo

![Triângulo retângulo](image1)

Fonte: Elaborada pelo autor

Em qualquer triângulo retângulo, o maior lado, que é oposto ao ângulo reto, chama-se **hipotenusa**; enquanto os outros dois lados são chamados de **catetos**.

Como está expresso na figura 12 a seguir:

Figura 12 – Triângulo Retângulo

![Triângulo retângulo](image2)

Fonte: Elaborada pelo autor
Muito antes de Pitágoras, na Babilônia, foram encontrados muitos tabletes de barro datados do período de 1800 a 1600 a.C. comprovando que os babilônios antigos já conheciam esse teorema. Esses tabletes foram decifrados e hoje encontram-se guardados em vários museus. Um desses chama-se Plimpton 322, está na Universidade de Columbia e preserva uma tabela de 15 linhas e 3 colunas de números. Pesquisadores descobriram que esses números formam ternos pitagóricos.

Num outro tablete, guardado hoje no Museu Britânico, está escrito uma pista concreta de que os babilônios já trabalhavam com números que relacionavam os lados de um triângulo retângulo. Nesse tablete está escrito:

4 é o comprimento
5 é a diagonal
Qual é a altura?
4 vezes 4 dá 16
5 vezes 5 dá 25
Tirando 16 de 25 o resto é 9
Quanto vezes quanto devo tomar para ter 9?
3 vezes 3 dá 9
3 é a altura

Isso mostra que eles sabiam que todo triângulo de lados proporcionais a 3, 4 e 5 é um triângulo retângulo. E também descobriram que o quadrado do maior lado (hipotenusa) é igual à soma dos quadrados dos outros dois lados (catetos).

Figura 13 – Triângulo retângulo com a relação de Pitágoras

![Triângulo retângulo com a relação de Pitágoras](image)

Fonte: Elaborada pelo autor
Além dos babilônios, os chineses também conheceram esse teorema cerca de 600 anos antes de Pitágoras. Mas a demonstração desse resultado nunca foi realizada por nenhum desses dois povos. Somente Pitágoras a realizou pela primeira vez. Não sabemos até hoje qual foi a demonstração original, mas segundo historiadores, foi algo usando áreas, talvez desenhando figuras planas na areia ou com o auxílio de cordas, Pitágoras demonstrou o famoso teorema que recebeu o seu nome. Hoje podemos enunciar o teorema de Pitágoras assim:

“Em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados que têm como lados cada um dos catetos”.

4.3 Os primeiros números irracionais

Já enfatizamos anteriormente que uma das muitas demonstrações atribuídas a Pitágoras é a que usa áreas. Entretanto, antes de demonstrarem esse resultado que ficou conhecido como o teorema de Pitágoras, os pitagóricos achavam que tudo na natureza podia ser explicado pela razão entre dois números naturais. Mas eles se enganaram, ao tentar encontrar a medida da hipotenusa de um triângulo retângulo e isósceles (catetos de mesma medida), perceberam que a medida desse segmento era um número que não existia entre os racionais.

Segundo Guelli (1992), os pitagóricos fizeram o seguinte: construíram, provavelmente na areia, um triângulo retângulo e isósceles, de catetos medindo 1 unidade, aplicaram sobre cada cateto um quadrado de lado também medindo 1 unidade, depois dividiram cada cateto, que também é lado do quadrado aplicado, em três segmentos de medidas (u) aproximadamente iguais, construindo quadradinhos como mostra a figura:

Figura 14 – Representação geométrica do teorema de Pitágoras

Fonte: Elaborada pelo autor
Em seguida, para dividir a hipotenusa em partes iguais, usaram a mesma unidade de medida \((u)\) adotada para o lado de cada quadradinho.

Aí veio a surpresa, a unidade de medida \((u)\) não cabia um número inteiro de vezes na hipotenusa.

Figura 15 – Representação geométrica do teorema de Pitágoras

Fonte: Elaborada pelo autor

Mas eles não desistiram, resolveram então dividir os catetos em partes menores, primeiro dividiram em seis partes iguais, mesmo assim, as novas unidades de medida não couberam um número inteiro de vezes na hipotenusa. Em seguida, dividiram cada cateto em doze partes iguais, também não adiantou, novamente a unidade de medida encontrada não coube um número inteiro de vezes na hipotenusa.

Sem fazer muitos cálculos, hoje sabemos que, as medidas das hipotenusas de triângulos retângulos e isósceles com catetos medindo 3, 6 ou 12 unidades, são respectivamente, \(\sqrt{18}\), \(\sqrt{72}\) ou \(\sqrt{288}\) unidades. Mas, até então, os pitagóricos só conheciam os números racionais. Portanto, eles não tinham ideia de que números eram esses.

Dessa forma, Pitágoras e seus companheiros decidiram que não encontrariam um segmento unitário que coubesse um número inteiro de vezes nos catetos e na hipotenusa daquele triângulo, por mais que divídíssem os catetos desse triângulo em segmentos menores, não adiantaria. Concluíram que a medida de tal segmento não existia, isto quer dizer que a razão entre a hipotenusa e um dos catetos desse triângulo também não podia existir, ou seja, essa razão não era um número racional.
Então havia chegado o momento de surgir um novo tipo de número, o problema que os pitagóricos estavam a resolver naquela época necessitava desse novo número. Tal número não se enquadra nas características de número racional, isto é, nem era natural e nem podia ser escrito como uma razão de dois números naturais. Ora, o que não é racional, é **irracional**.

Foi dessa maneira que descobriram \(\sqrt{2} \), o primeiro número irracional, partindo de um triângulo retângulo e isósceles com catetos de comprimento 1:

Figura 16 – Triângulo retângulo e isósceles

![Triângulo retângulo e isósceles](image)

Fonte: Elaborada pelo autor

Nessa época, o símbolo da raiz quadrada \(\sqrt{\ } \) ainda não existia, por isso, em vez de dizerem raiz quadrada de 2, os gregos diziam o seguinte: **“o número que multiplicado por si mesmo é 2”**. Após a descoberta desse processo de construção geométrico pelo qual se chegou ao \(\sqrt{2} \), muitos outros números irracionais foram descobertos, entre outros podemos destacar:

\[
\sqrt{3} \quad \sqrt{5} \quad \sqrt{6} \quad \sqrt{7} \quad \sqrt{8} \quad \sqrt{10} \quad \sqrt{11} \quad \sqrt{12} \quad \sqrt{13} \quad \sqrt{2} \quad \pi.
\]

São infinitos os irracionais!

Hoje sabemos que o conjunto dos números irracionais é infinito, contudo, dois dentre estes infinitos números se destacam; um é o \(\sqrt{2} \), outro, é o famoso \(\pi \). Ambos, serão apresentados a seguir através de um contexto histórico muito interessante e curioso.

✓ **O altar de Apolo**

No século V a.C., Atenas passou por uma epidemia de peste muito forte e violenta, fazendo com que uma quarta parte da sua população fosse extinta.

Segundo historiadores, os atenienses teriam enviado uma delegação ao oráculo de Apolo, que se localizava na cidade de Delfos, a fim de perguntar como poderiam combater tal peste. A delegação ateniense teria recebido como resposta que, para extinguir a peste, o altar de Apolo, que tinha a forma de um cubo, deveria ser duplicado. (GUelli, 1992).
A delegação voltou à Atenas com muita alegria e convicção de que a peste iria acabar de uma vez por todas, pois aquela missão, de duplicar o cubo, recebida no oráculo de Apolo, aparentava ser muito fácil de cumprir-se de forma correta.

Caso contrário, se o altar de Apolo não fosse duplicado corretamente, a peste tornaria-se muito mais intensa e devastadora. Depressa a população de Atenas dobrou os lados do altar, mas cometem algum erro, pois a peste intensificou-se.

O que aconteceu foi um erro muito comum até mesmo na geometria plana. Por exemplo, podemos fazer analogia desta situação com o problema de duplicar o quadrado, que é algo semelhante.

Voltando para a duplicação do cubo, sabemos que o volume de um cubo é dado pelo produto de suas três dimensões: largura, comprimento e altura. Como o cubo é um poliedro regular, essas três dimensões coincidem, têm a mesma medida, e passam a fazer parte das 8 arestas que constituem o cubo, isto é, para calcular o volume de um cubo, basta multiplicar três quaisquer de suas arestas.

Tomando-se um cubo de aresta \(a \), seu volume, em símbolos, será expresso por:

\[
V = a \cdot a \cdot a
\]

\[
V = a^3
\]

Fonte: Elaborada pelo autor

Os atenienses, para duplicar o cubo (altar de Apolo), não quiseram saber de coisa alguma! Duplicaram as arestas do cubo. O que não funcionou. Para entendermos o motivo, vamos ver o que acontece quando dobramos as arestas de um cubo:
Figura 18 – Cubo de arestas $2a$

Fonte: Elaborada pelo autor

Inicialmente, o cubo de aresta a tem volume $V = a^3$. Dobrando as arestas desse cubo, obtemos um novo cubo de arestas medindo $2a$, que são o dobro das arestas do primeiro cubo. Entretanto, o novo volume não será o dobro do volume do primeiro cubo, como imaginaram os atenienses, o cálculo da figura anterior mostra que esse novo volume é dado por $V = 8a^3$, ou seja, o altar teve seu volume multiplicado por 8, e não por 2.

Dessa forma, podemos concluir que o problema da duplicação do cubo, se reduz a uma equação. Por exemplo, considerando um cubo com arestas medindo 2, seu volume será $V_1 = 2^3$. Como queremos duplicar o volume desse cubo, estamos em busca de um novo cubo com arestas medindo um valor ainda desconhecido, que chamaremos de a, e o seu volume será dado por $V_2 = a^3$. Finalmente, como V_2 tem que ser o dobro de V_1, chegamos a equação:

$$V_2 = 2 \cdot V_1 \Rightarrow a^3 = 2 \cdot 2^3 \Rightarrow a = \sqrt[3]{2} \cdot 2^3 \Rightarrow a = \sqrt[3]{2} \cdot \sqrt[3]{2^3} \Rightarrow a = \sqrt[3]{2} \cdot 2$$

Podemos perceber que $\sqrt[3]{2}$ aparece como uma constante no problema da duplicação do cubo. De modo geral, toda vez que se deseja dobrar o volume de um cubo de arestas medindo a, basta multiplicar uma dessas arestas a por $\sqrt[3]{2}$, obtendo assim a medida de uma nova aresta $a \cdot \sqrt[3]{2}$, que dobra o volume do cubo. Durante muito tempo os matemáticos tentaram expressar essa constante como uma razão de dois números naturais, mas não conseguiram, pois $\sqrt[3]{2}$ é um número irracional e é impossível escrevê-lo como uma razão.

✓ π uma razão muito especial

Os egípcios eram verdadeiros mestres na construção de grandes obras arquitetônicas, mesmo assim, encontraram muita dificuldade para calcular o perímetro de terrenos circulares.
Eles criaram uma maneira prática e simples de medir o comprimento de uma circunferência, que em seguida, foi adotada por vários povos da Antiguidade.

Figura 19 – Quadrados inscritos e circunscritos em uma mesma circunferência

![Quadrados inscritos e circunscritos em uma mesma circunferência](image)

Fonte: Elaborada pelo autor

O procedimento usado pelos egípcios para medir tal comprimento foi o seguinte: traçavam dois diâmetros perpendiculares entre si e dividiam a circunferência em quatro partes iguais, os quatro pontos situados sobre a circunferência pelos dois diâmetros, determinam um quadrado inscrito nela e as tangentes que passam por esses mesmos pontos, determinam um outro quadrado circunscrito à circunferência, como ilustrado na figura abaixo:

Para calcular o comprimento de uma circunferência, os egípcios seguiam este raciocínio.

Por exemplo, inscrevendo um quadrado em uma circunferência e dobrando o número de lados desse quadrado, obtéremos um polígono de 8 lados, repetindo o mesmo processo, isto é, dobrando o número de lados de um polígono de 8 lados, obteremos um polígono de 16 lados. Calculando o perímetro do polígono de 16 lados, encontramos um valor aproximado do comprimento da circunferência.

Foi este o método criado pelos egípcios: eles inscreviam numa circunferência um polígono regular e iam dobrando o número de lados do polígono. Quanto maior o número de lados do polígono, mais próximos eles ficavam do comprimento da circunferência.

De forma análoga, o processo inverso também pode ser aplicado, isto é, com um polígono circunscrito a uma circunferência e dobrando-se o número de lados dele, obtemos uma aproximação do comprimento da circunferência, por excesso.

Para obter uma melhor aproximação, os egípcios usavam a ideia de que o comprimento da circunferência era **maior** do que o perímetro de um polígono de \(n \) lados inscrito à ela e **menor** do que o perímetro de um polígono de mesmo número de lados \(n \), circunscrito a ela.
Os egípcios logo descobriram que a razão entre o comprimento de uma circunferência e o seu diâmetro é a mesma para qualquer circunferência, ou seja, uma constante. Essa razão hoje é chamada de pi e é indicada pelo símbolo π.

Considerando uma circunferência de comprimento \(c \) e diâmetro \(d \), temos que:

\[
\frac{c}{d} = \pi \text{ ou } c = \pi \cdot d
\]

Hoje sabemos que pi é um número irracional com infinitas casas decimais. Mas, na Antiguidade, os egípcios ainda não conheciam bem esse número. Há cerca de 3500 anos, para conseguirem expressá-lo por \(3 \frac{1}{6} \) que se aproxima bastante de 3,16, os egípcios trilharam o mesmo processo descrito anteriormente. Pegaram um quadrado de lado 9, depois dobraram os lados do quadrado para obter um polígono de oito lados. Em seguida, calcularam a razão entre os perímetros dos polígonos de oito lados inscrito e circunscrito e o diâmetro da circunferência.

Essa aproximação alcançada pelos egípcios superou a dos babilônios, que atribuíam 3 ao valor de pi. Eles diziam que “o comprimento de qualquer circunferência era o triplo de seu diâmetro”.

Com o passar dos séculos, matemáticos do mundo inteiro se empenharam muito para dar um valor mais aproximado para pi.

Arquimedes, por volta do século III a.C., também calculou o valor de pi. Partindo de um hexágono regular e dobrando o seu número de lados sucessivamente, atingiu um polígono de 96 lados, depois de calcular o perímetro desse polígono, encontrou para pi um valor entre \(3\frac{10}{71} \) e \(3\frac{40}{70} \). Isto é, um número entre 3,1408 e 3,1428.

“Arquimedes, nasceu em 287 a.C. na colônia grega de Siracusa (Sicília, sul da Itália). Ficou famoso também como inventor de diversos equipamentos: alavanca, roldana, parafuso sem fim, rodas dentadas. Conta-se que criou um sistema de espelhos que refletiam e concentravam os raios solares, incendiando, a distância, navios inimigos. Graças a seus inventos, Siracusa pôde resistir durante três anos ao cerco dos romanos. Foi morto por um soldado romano em 212 a.C., durante a tomada de Siracusa”.

Mais tarde, por volta do século III d.C., em Alexandria, no Egito, Ptolomeu conseguiu calcular um valor para pi através de um polígono de 720 lados inscrito numa circunferência de 60 unidades de raio, obtendo como resultado \(\frac{377}{120} \), um valor aproximadamente igual a 3,1416.

Também no século III, um chinês, copiador de livros, de nome Liu Hui, obteve através de um polígono de 3072 lados, uma aproximação com cinco casas decimais exatas 3,14159.
No fim do século V, outro matemático de nome TsuCg’ung-chic expressou o valor de pi como sendo um número compreendido entre 3,1415926 e 3,1415927. Em seguida, o matemático Hindu Aryabhata atribuiu a pi \(\frac{62832}{20000}\), que é exatamente igual a 3,1416.

Até o século XV, o valor com maior aproximação havia sido encontrado pelo árabe al-Kashi, com 16 casas decimais extremamente corretas: 3,1415926535897932. Até que o holandês e matemático Ludolph van Ceulen (1540-1610) no final do século XVI, deu para pi uma aproximação com 20 casas decimais. Em seguida, conseguiu uma aproximação ainda maior, com 35 casas decimais.

Atualmente, computadores calculam o valor de pi, em segundos, com milhões de casas decimais.

O símbolo \(\pi\) usado para representar o número pi, foi imposto, em 1737, pelo matemático suíço Leonhard Euler (1707-1783). Nessa mesma época os matemáticos conseguiram demonstrar que \(\pi\) é um número irracional.

4.4 Um pouco sobre Euler

Leonhard Euler, nasceu no dia 15 de abril de 1707, na cidade de Basiléia, Suíça.

Euler descobriu que gostava de Matemática assistindo a conferências de Jean Bernoulli, matemático suíço e pai de seus dois maiores amigos, Daniel Bernoulli e Nicolaus Bernoulli.

Além de Matemática, Euler também estudou na Universidade de Basiléia, Teologia, Medicina, Astronomia, Física e às línguas orientais. Ao terminar o curso, seus amigos o indicaram para dar aulas de Medicina e Fisiologia na Academia de Ciência de São Petersburgo, na Rússia. Então, aos 20 anos, Euler partiu para São Petersburgo, onde três anos depois, recebeu de Daniel a cadeira de Matemática.

Aos 31 anos, Euler começa a ficar cego de um dos olhos, a mau adaptação ao clima russo e os intensos estudos agravavam ainda mais seu estado de saúde.

No ano de 1741, foi convidado para exercer o cargo de vice-presidente da seção de Matemática da Academia de Berlim, na Alemanha, onde escreveu mais de trezentos trabalhos científicos.

Em 1776, Euler retorna à Rússia e descobre que estava perdendo a visão de seu outro olho. Depois de completamente cego, seus filhos, Krafft e Lexil, o auxiliavam em suas novas descobertas.
Suas pesquisas e a introdução de muitos dos símbolos matemáticos que usamos atualmente abriram novos caminhos para o desenvolvimento da Matemática. Por estas razões, Euler é considerado o mestre de todos os matemáticos do século XVIII. Euler faleceu no dia 18 de setembro de 1783, quando tomava chá em sua casa. (GUELLI, 1992).

4.5 Afração decimal

Chama-se fração decimal toda fração cujo denominador é uma potência de dez. Por exemplo:

\[
\frac{1}{10} \quad \frac{2}{100} \quad \frac{5}{1000} \quad \frac{13}{10000} \quad \frac{57}{100}
\]

Com o descobrimento dos números irracionais, surgiram as dificuldades de se trabalhar com esses números. No séc. XVI, os matemáticos da época trabalhavam com frações para dar uma aproximação significativa a esses números. Assim por exemplo, \(\sqrt{3}\) era substituído por \(\frac{173}{100}\), enquanto \(\pi\) era substituído por \(\frac{22}{7}\).

A necessidade de se trabalhar com frações para representar os irracionais, fez com que os matemáticos percebessem que efetuar os cálculos com frações cujo denominador fosse uma potência de 10 seria mais fácil.

Foi aí que o holandês, engenheiro e matemático, Stevin, em 1585, escreveu um livretão de nome O décimo, cujo objetivo era ensinar as pessoas a fazerem todos os cálculos que necessitassem de frações decimais, sem usar frações. Stevin, em vez de usar o denominador 10 para escrever uma fração decimal, usava um número escrito ao lado ou acima de cada algarismo do numerador para indicar a posição ocupada por esse algarismo como se fosse depois da vírgula. Por exemplo:

\[
\frac{25}{10} \quad 25(1) \\
\frac{147}{100} \quad 1 \ 4(1) \ 7(2) \\
\frac{589}{1000} \quad 5(1) \ 8(2) \ 9(3)
\]

Tal notação introduzida por Stevin foi fundamental para o desenvolvimento dos números decimais. Embora sua forma de separar a parte inteira da parte decimal não tenha sido a melhor, Stevin foi o primeiro matemático a conseguir expressar um número decimal.
A partir de então, Napier, matemático e fazendeiro escocês, conseguiu uma representação mais apropriada. Ele pôs um traço sob os algarismos do numerador. A quantidade de algarismos assinalados representava a quantidade de zeros do denominador. Assim:

\[
\begin{align*}
\frac{25}{10} & \quad \frac{25}{10} \\
\frac{147}{100} & \quad \frac{147}{100} \\
\frac{589}{1000} & \quad \frac{589}{1000}
\end{align*}
\]

Em 1617, Napier começa a fazer uso de um **ponto** ou de uma **vírgula** para separar a parte inteira da parte decimal. Dessa maneira, os números expressos acima, passaram a ser escritos assim:

\[
2.5 \quad 1.47 \quad 0.589 \quad \text{ou} \quad 2,5 \quad 1,47 \quad 0,589
\]

Esses números cuja parte inteira separa-se da parte decimal por ponto ou vírgula, chamam-se **números decimais**.

Os números decimais simplificaram muito os cálculos com frações, porém, no início, eles foram destinados principalmente a cálculos astronômicos, pois além de trabalhar com números grandes, a Astronomia também requer resultados mais precisos e os números decimais desempenharam bem esse papel.

A partir da criação do sistema métrico decimal, os números decimais passaram a ser mais usados no cotidiano de vários povos do mundo inteiro, foi aí que os matemáticos perceberam a grande importância e utilidade desse novo tipo de número.

Vejamos alguns exemplos referentes ao sistema métrico decimal:

Figura 20 – Exemplos de transformações de unidades do sistema métrico decimal

\[
\begin{align*}
25 \text{ cm} & = 0,25 \text{ m} \\
1500 \text{ m} & = 1,5 \text{ km} \\
1 \text{ mm} & = 0,001 \text{ m}
\end{align*}
\]
Fonte: Elaborada pelo autor

Depois de muitos avanços, no que diz respeito ao conceito de número, a Matemática se tornou uma ferramenta essencial para o desenvolvimento das ciências e das tecnologias, cálculos complexos já eram executados entre matemáticos no final do século XVI, as descobertas dos grandes mestres da matemática ao longo dos séculos, foram de fundamental importância para tamanho avanço. Cálculos eram realizados com todos os tipos de números existentes. Mesmo assim, os grandes matemáticos da época ficavam perplexos ao se deparar com situações envolvendo uma subtração cujo resultado fosse um número “absurdo”, isto é, um número que não existia.

Expressões do tipo: $5 - 8$, $25 - 98$, $1 - 2$, eram consideradas absurdas porque seus resultados não pertenciam a nenhum dos tipos de números até então conhecidos: naturais, fracionários, decimais, irracionais.
5. O NÚMERO NEGATIVO

O crescimento exponencial do comércio e das cidades européias se deu, principalmente, na passagem da Idade Média para a Idade Moderna.

Nessa época, entre os séculos XIV e XVI, os europeus viviam em busca de novas mercadorias para alimentar o comércio interno, mas isso não estava sendo mais possível somente na Europa, daí surgiram enormes avanços na navegação, fazendo com que os europeus encontrassem novas terras para explorar e importar mercadorias para os países da Europa.

De acordo com Guelli, 1992, em meio a esse grande crescimento da atividade comercial, econômica, política e social, surgiu o Renascimento, alimentado pela arte, a cultura a as ciências. Com essa revolução da cultura, a Matemática e as ciências se desenvolveram ainda mais.

O Renascimento trouxe um desenvolvimento científico muito grande, que se apoiou bastante na evolução do conceito de número. A partir daí, o número deixava de ser empregado somente aos cálculos puros e passava a expressar também alguns fenômenos naturais que estavam sendo estudados, como as leis da queda dos corpos, na Física, por exemplo.

Os números inteiros, fracionários, decimais e irrationais até então conhecidos, já eram chamados pelos matemáticos de números reais.

Mas os problemas postos pelo desenvolvimento científico do Renascimento necessitavam de um novo tipo de número, tal número deveria juntar-se aos números reais sem causá-los danos, isto é, sem alterar nenhum dos conceitos que foram construídos e atribuídos a esses números durante séculos. Isso nos mostra o tamanho das dificuldades enfrentadas para agregar esses números absurdos aos reais. Contudo, os matemáticos notaram que isso era possível e assim o fizeram. Criaram os números negativos.

Entretanto, existem relatos de que os matemáticos chineses da Antiguidade trabalhavam com uma “espécie de número negativo”. Esses números eram tratados como excessos ou faltas.

Os chineses faziam seus cálculos em tabuleiros de cálculos, os excessos eram representados por palitos vermelhos e as faltas por palitos pretos. É evidente que os palitos vermelhos representavam quantidades positivas, coisas, objetos, medidas, etc; enquanto os palitos pretos representavam apenas as dívidas ou quantidades negativas, que até então eram tratadas como “números absurdos”. (BOYER, 1974, p. 147).
Os matemáticos da Índia também trabalharam com esse tipo de número, que não possuíam símbolos próprios, dessa forma, os “números absurdos” dos chineses e dos hindus nunca conseguiram se tornar verdadeiros números.

No século VII, o matemático Brahmagupta, tratava os números como *pertences* ou *dívidas*, mas foi uma ideia muito primitiva, por isso, sem sucesso.

5.1 O número negativo dos comerciantes

O desenvolvimento dos conceitos e dos símbolos matemáticos, sempre caminharam juntos, pois quando os símbolos são bem aplicados a um determinado conceito, as operações que se desejam realizar tornam-se práticas e eficientes.

Na época do Renascimento, os matemáticos tinham a necessidade de um novo tipo de número que fosse capaz de solucionar não só subtrações, como vimos anteriormente, mas também equações triviais do tipo: \(x + 1 = 0\), \(2a + 4 = 0\), \(y + 8 = 1\).

Além dos matemáticos, os físicos e os astrônomos também precisavam de símbolos que representassem bem as grandezas, como temperaturas maiores ou menores que 0 °C, o movimento de atração entre dois corpos, entre outros.

Finalmente, para representar o novo tipo de número a ser criado, era preciso encontrar um símbolo que possibilitasse operações fáceis e práticas. Para tanto, os matemáticos se inspiraram nos espertos e inteligentes comerciantes do Renascimento.

Esses comerciantes faziam o seguinte: no final de cada dia, na frente de cada saco que colocavam suas mercadorias para serem vendidas, escreviam o número de quilogramas que foram vendidos com um tracinho na frente do número. Se o que sobrasse em um saco fosse muito pouco, eles despejavam em outro saco mais cheio e escreviam o número de quilogramas vendidos com dois tracinhos cruzados na frente, para lembrarem-se de que haviam colocado aquela quantidade a mais naquele saco.

A partir desses símbolos que os comerciantes adotaram, os matemáticos passaram a representar ganhos ou perdas de uma quantidade com a notação dos sinais de mais e de menos. Daí o surgimento do *número com sinal*, *positivo* ou *negativo*.

Passou-se muito tempo para que esses números fossem aceitos. O que tornou mais clara a sua compreensão foi a sua representação na reta numérica.
FIGURA 21: Representação dos números positivos e negativos na reta numérica

Fonte: Elaborada pelo autor

As operações com números negativos eram consideradas difíceis e estranhas. Pois, além de efetuar uma operação entre dois números, também era preciso descobrir o sinal do resultado. Por esta razão, foram criadas as famosas regras de sinais.

Para a multiplicação, as regras de sinais são aplicadas assim:

✓ mais por mais dá mais;

 (+2) · (+3) = +6

✓ mais por menos dá menos;

 (+2) · (−3) = −6

✓ menos por mais dá menos;

 (−2) · (+3) = −6

✓ menos por menos dá mais.

 (−2) · (−3) = +6

Também podemos resumir as regras da multiplicação em:

- sinais iguais dá mais;
- sinais contrários dá menos.

Quanto à adição, usam-se as seguintes regras:

✓ na adição de números com mesmos sinais, soma-se os números e conserva-se o sinal de ambos.

Ex.:

a) (+2) + (+3) = +5

b) (−4) + (−2) = −4 − 2 = −6

✓ na adição de números com sinais contrários, subtrai-se o número menor do maior e conserva-se o sinal do número maior.

Ex.:

a) (+12) + (−7) = 12 − 7 = +5

b) (−3) + (+8) = −3 + 8 = +5
6. CONSIDERAÇÕES

De acordo com a presença da Matemática nas atividades do homem ao longo dos tempos, realizamos uma consulta de cunho histórico, sobre datas significativas, fatos relevantes, personagens importantes, relacionados ao tema em tela, o **Número**, buscando destacar através desse pequeno recorte, esse ente matemático envolvido em todas as Eras em formulações e soluções de desafios diversos a despeito do conteúdo em tela e do grau de complexidade exigido.

Dessa forma, entendemos ser importante e plenamente possível quando da abordagem de um determinado conteúdo, conciliar os momentos destinados à obtenção de métodos e fórmulas objetivando a resolução de problemas, com momentos que possibilitem ao educando ampliar seu aprendizado não se limitando apenas ao desenvolvimento de exercícios propostos pelos livros agregando dessa forma a sua formação, uma visão mais abrangente e criativa.

Embora os parâmetros curriculares juntamente aos conteúdos dos livros didáticos determinem a ordenação e respectiva quantidade de conteúdos a serem ministrados nas respectivas séries, não impede que os interessados por essa metodologia, quer sejam docentes ou mesmo gestores de instituições de ensino, busquem alternativas que conduzam seus esforços a um aprendizado realmente diferenciado, criativo e principalmente significativo.

No entanto, tal opção deve ser acompanhada do devido senso de comprometimento uma vez que implicará inevitavelmente no desenvolvimento de ações que demandam conhecimento ou formação adequada que muitas vezes não temos. É óbvio que a vontade de fazer diferente é fator importante para uma mudança de comportamento, porém, tal vontade deve vir acompanhada de muita determinação em buscar qualificar-se através dos equipamentos adequados e certamente disponíveis tais como: cursos de pós graduação, oficinas, comunicações e muita leitura individual como suporte para todas essas ações.

Tal iniciativa e conduta irão proporcionar a todos os envolvidos nesse processo de ensino aprendizagem, um perfil seguramente valorizado pelas correntes da Educação Matemática e de que forma alguma confrontam ou se opõem aos espaços reservados aos modelos ditos convencionais de ensino.
REFERÊNCIAS

REVISTA DO PROFESSOR DE MATEMÁTICA. Sociedade Brasileira de Matemática. Caixa postal 20 570; CEP 01498, São Paulo.
