

AGRADECIMENTOS

A todos meus colegas de curso que contribuíram para o empenho e superação nesse trabalho.

Aos professores desse curso de especialização que dedicaram seu conhecimento a todos nós.

Aos colegas da Santigo e Cintra pela demonstração de escanemanto a laser de uma instalação da Chesf e também a VIT Engenharia que modelou a nuvem de pontos.

A Companhia Hidro Elétrica do São Francisco – Chesf por ter proporcionado essa realização.

A minha família e pessoas amadas que fazem minha vida ter sentido a cada dia que acordo.

A Deus por permitir minha saúde e paz.

Ao amor que rege todos nós.

RESUMO

Para manter a disponibilidade de energia elétrica a Companhia Hidro Elétrica do São Franscisco – Chesf mantém um sistema de transmissão composto de quase 19 mil quilômetros de linhas de transmissão e mais de 100 subestações predominantemente em níveis de tensão de 230 e 500 kV. Em boa parte dos trabalhos de manutenção, todo um planejamento é executado antes do seu início, para garantir a segurança dos trabalhadores, bem como a integridade das instalações.

Devido abrangência desse parque de transmissão, várias equipes são geograficamente distribuídas para diminuir o tempo de atendimento das manutenções. Mesmo assim deslocamentos de 100, 200 e até 500 km são realizados para atender as demandas solicitadas.

Alguns desses deslocamentos são necessários para que seja realizado in loco, um Planejamento Executivo – PEX e Análise Preliminar de Risco – APR da manutenção, tido que a definição da técnica mais adequada para realizar essa atividade só pode ser concebida, visualizando as distâncias a pontos energizados, equipamentos, posicionamentos dos trabalhadores envolvidos, etc.

Nesse sentido alguns trabalhos de cunho mais simples representam por vezes grande custo de homem x hora envolvido. Este trabalho propõe uma metodologia de utilizar nuvens de pontos de uma instalação elétrica, coletada por equipamento de escaneamento a laser, para substituir a ida ao referido local.

De mãos desses dados o profissional responsável pode realizar o PEX e APR de maneira segura, com menor custo e envolvimento físico, diminuindo sua ocupação em deslocamentos por vezes demorados.

A nuvem de pontos coletada por equipamento de escaneamento a laser permitir cálculo de distância, ângulo, navegação em 3D, de modo que apresente ao profissional uma situação semelhante ao do local, permitindo a elaboração do PEX e APR com o mais grau de segurança e detalhes do que a ida ao local.

Palavras-chave: Planejamento Executivo (PEX) e Análise Preliminar de Risco (APR), Sensoriamento Remoto e Lidar

ABSTRACT

To maintain the availability of electricity to Hydro Electric Company of San Francisco - Chesf maintains a transmission system composed of nearly 19,000 km of transmission lines and over 100 substations in predominantly voltage levels of 230 and 500 kV. In much of the maintenance work a whole planning is performed before the start of each work to ensure worker safety and integrity of facilities.

Because the transmission range of this park several teams are geographically distributed to reduce the handling time necessary servicing, yet displacements of 100, 200 and even 500 km are made to meet the demands required.

Some of this shift are performed so as to realize a Planning Executive - PEX and Risk Analysis Peliminar - APR before work proper, had the definition of the appropriate technique to perform this task can only be found can be achieved only displayed the points away from energized equipment, placement of workers involved to ensure the safety of personnel involved, as well as the installation itself.

In this sense some works of a more simple sometimes represent big man x hour cost involved. This paper proposes a methodology to use point clouds collected by a laser scanning device of an electrical installation to replace a visit to the venue.

From these data the hands could perform responsible professional and PEX APR safely, with less cost and quicker, reducing their occupation sometimes lengthy scrolling.

The point cloud data collected by a laser scanning device to allow distance calculation, 3D navigation to the site scanned much like reality itself.

Keywords: Planning Executive (PEX) and Preliminary Risk Analysis (PRA), Remote Sensing and Lidar

LISTA DE FIGURAS

FIGURA 1 – DISTRIBUIÇAO GEOGRAFICA DAS LINHAS E SUBESTAÇÕES DA CHESF2
FIGURA 2 – EXEMPLO DE DISTÂNCIA DE UM SERVIÇO (SPML) ATÉ UMA SUBESTAÇÃO DE SUA JURISDIÇÃO (SE BNO)3
FIGURA 3 – MODELO EM BRANCO DE PEX COM SEUS REFERIDOS CAMPOS)5
FIGURA 4 – MODELO EM BRANCO DE APR6
FIGURA 5 – TRECHO DE UMA SUBESTAÇÃO DE 69 kV
FIGURA 6 – MODELAGEM DE AVIÃO8
FIGURA 7 – TOPOGRAFIA DE PRÉDIO
FIGURA 8 – MODELO EM 3D DE PRÉDIO ANTIGO9
FIGURA 9 – MODELO TRIDIMENSIONAL DA CENA DE UM CRIME9
FIGURA 10 – ENVIO E RETRONO DE PULSO DE LASER10
FIGURA 11 – RETORNOS DE PULSO LASER11
FIGURA 12 – NUVEM DE PONTOS BRUTA DE UMA INSTALAÇÃO ELÉTRICA12
FIGURA 13 – NUVEM DE PONTOS MODELADA
FIGURA 14 – LIDAR TERRESTRE TOPCON GLS – 150013
FIGURA 15 – SOFTWARE CADMATIC15
FIGURA 16 – ETPAS DO DESENVOLVIMENTO15
FIGURA 17 – ESCANEAMENTO DA NUVEM DE PONTOS15
FIGURA 18 – SOFTWARE TOPCON SCAN MASTER16
FIGURA 19 – VISTA 1 DA CHAVE 32J1-417
FIGURA 20 – VISTA 2 DA CHAVE 32J1-4
FIGURA 21 – VISTA 3 DA CHAVE 32J1-4
FIGURA 22 – MEDIÇÃO DA ALTURA LOCAL DA INTERVENÇÃO - SOLO18
FIGURA 23 – POSICIONAMENTO DO ANDAIMENTO ISOLANTE

LISTA DE TABELAS

TABELA 1 – SUBESTAÇÕES DA CHESF	2
TABELA 2 – SUBESTAÇÕES QUE A CHESF OPERA E MANTÉM	3
TABELA 3 – DISTÂNCIA DAS SUBESTAÇÕES AOS SEUS SERVIÇOS DE MANUTENÇÃO	o. 3

LISTA DE ABREVIATURAS E SIGLAS

CHESF Companhia Hidro Elétrica do São Francisco

DML Departamento de Manutenção de Linhas de Transmissão

DODL Divisão de Manutenção e Análise do Desempenho das Linhas de

Transmissão

DOML Divisão de Metodização de Linhas de Transmissão

SEP Sistema Elétrico de Potência

SIN Sistema Interligado Nacional

SLLR Serviço de Manutenção de Linhas de Transmissão de Recife

SLMG Serviço de Manutenção de Campina Grande

SLML Serviço de Manutenção de Rio Largo

SNLF Serviço de Manutenção de Linhas de Transmissão de Fortaleza

SNMM Serviço de Manutenção de Milagres

SOML Serviço de Manutenção de Linhas de Transmissão Oeste

SPML Serviço de Manutenção de Linhas de Transmissão de Paulo Afonso

SSLS Serviço de Manutenção de Linhas de Transmissão Sul

SSMA Serviço de Manutenção de Aracaju

SSMF Serviço de Manutenção de Linhas de Transmissão de Funil

SBML Serviço de Manutenção de Linhas de Transmissão de Sobradinho

PEX Planejamento Executivo

APR Análise preliminar de Risco

LIDAR Light Detection and Ranging - Detecção de Luz e Distância

REM Radiação Eletromagnética

SONAR Sound Navigation And Ranging - Navegação e Distância pelo Som

RADAR Radio Detection And Ranging - Detecção de Rádio a Distância

SUMÁRIO

1	INTRODUÇÃO1
	1.1 O Problema 1
	1.2 Justifica1
	1.3 Objetivo Geral e Específicos1
	1.4 Subestações da Chesf1
	1.5 Apresentação4
2	FUNDAMENTAÇÃO TEÓRICA5
	2.1 Planejamento Executivo (PEX) e Análise Preliminar de Risco (APR) 5
	2.2 Intervenção em Barramentos de Sub estações6
	2.3 Sensoriamento Remoto7
	2.4 LIDAR
	2.4.1 Princípio de Funiconamento10
	2.4.2 Processamento dos Dados11
3	METODOLOGIA DO TRABALHO13
	3.1 Equipamento e Software Utilizados13
	3.2 Etapas de Desenvolvimento do Trabalho14
	3.2.1 Aquisição de Nuvem de Pontos14
	3.2.2 Transferência da Nuvem de Pontos15
4	ELABORAÇÃO DE PEX E APR UTILIZANDO NUVENS DE PONTOS DE LIDAR
	4.2 Análise Econômica19
5	APLICAÇÕES DO LIDAR EM LINHAS DE TRANSMISSÃO 19
6	CONCLUSÕES
7	ANEXOS
8	REFERÊNCIAS BIBLIOGRÁFICAS

1. INTRODUÇÃO

1.1. O Problema

A Companhia Hidro Elétrica do São Francisco (Chesf) possui um parque de transmissão eletro geograficamente distribuído (ver Figura 1). São quase 19 mil quilômetros de linhas de transmissão e 100 subestações. Todo esse sistema é diariamente acessado no sentido de se realizar manutenções de preferência preditiva¹. Essas intervenções nas subestações são precedidas de um Planejamento Executivo (PEX) e Análise Preliminar de Risco (APR).

Essas ferramentas são elaboradas, através de visitas a referida instalação, no sentido que visualizando o local a ser intervido pode-se estimar as distâncias envolvidas, posicionamento dos equipamentos/ferramentas, deslocamento seguro do profissional, enfim todas as condições de contorno necessárias. Todas as intervenções em qualquer instalação do Sistema Elétrico de Potência (SEP) possuem um risco controlado relevante e todas as precauções para um trabalho seguro e eficiente deve ser tomada, entre elas as principais são o PEX e APR.

Acontece que algumas intervenções que oferecem menor risco, como por exemplo, liberação de chaves, trabalho esse realizado com a instalação energizada, de certa forma entrou na rotina desses tipos de trabalhos, tendo inclusive um normativo próprio (IM-MN-LT-M.052). Para esses tipos de trabalho o deslocamento, por vezes longos (300 a 500 km), até o local a ser intervido no sentido de confeccionar o PEX e APR onera muito homem x hora, já bastante atarefado.

1.2. Justificativa

Esse trabalho expõe uma alternativa para que seja confeccionado o PEX e APR utilizando nuvem de pontos da instalação desejada, coletada de equipamento de escaneamento a laser. No conforto do próprio escritório o profissional pode simulando uma situação real confeccionar seu PEX e APR diminuindo os custos financeiros e de disponibilidade do profissional responsável por essa função.

1.3. Objetivo Geral e Específicos

Objetivo Geral

➤ Elaboração de PEX e APR utilizando nuvem de pontos de Laser Scanner

Objetivos Específicos

- > Reduzir Custos com deslocamentos e
- ➤ Reduzir envolvimento do homem x hora da manutenção em atividade de rotina

1.4. Subestações da Chesf

A Companhia Hidro Elétrica do São Francisco (Chesf) possui 98 subestações (ver Tabela 1 e 2), sendo 15 elevadoras de tensão, 76 abaixadoras de tensão e 7

seccionadoras, com capacidade de transformação de mais de 43.000 MVA. Além dessas, a Chesf opera e mantém uma subestação seccionadora de propriedade de terceiros.

	69 KV	138 KV	230 KV	500 KV	Total
Sistemas de Transmissão	7	4	55	17	83
Elevadores de Usinas	4	1	6	4	15
Total de Subestações	11	5	61	21	98

TABELA 1 – SUBESTAÇÕES DA CHESF

	69 KV	138 KV	230 KV	500 KV	Total
Sistemas de Transmissão			1		1

TABELA 2 – SUBESTAÇÕES QUE A CHESF OPERA E MANTÉM

Geograficamente essas subestações estão localizadas conforme a Figura 1. Para atender a essa demanda de manutenção existem 11 serviços de manutenção. A Figura 2, seguida da Tabela 3, ilustra a localização desses serviços com suas respectivas áreas de atuação e distância rodoviárias entre as suas subestações.

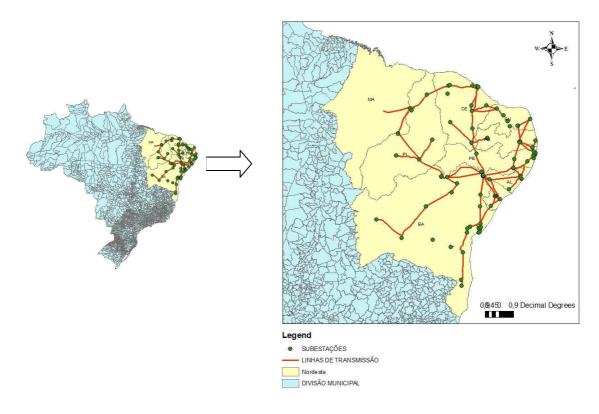


FIGURA 1 – DISTRIBUIÇÃO GEOGRÁFICA DAS LINHAS E SUBESTAÇÕES DA CHESF

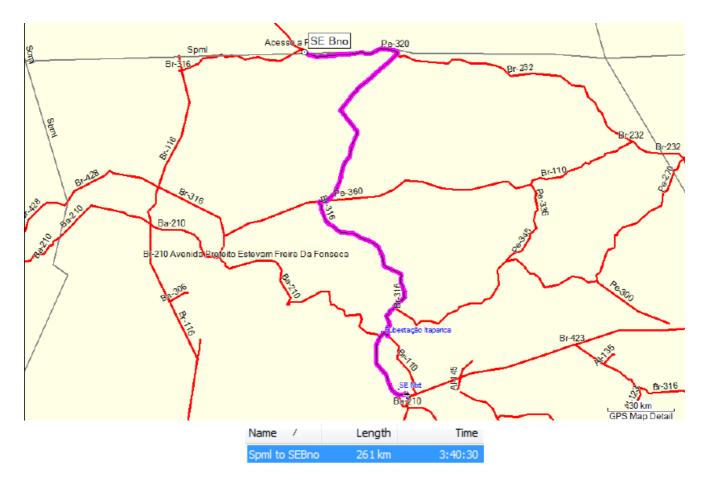


FIGURA 2 – EXEMPLO DE DISTÂNCIA DE UM SERVIÇO (SPML) ATÉ UMA SUBESTAÇÃO DE SUA JURISDIÇÃO (SE BNO)

SERVIÇO	SUBESTAÇÃO	DISTÂNCIA EM LINHA RETA (km)	DISTÂNCIA RODOVIÁRIA (km)	Tempo de Carro (horas e minutos)
	BOM NOME (PE) - BNO	163	261	3h40min
	CÍCERO DANTAS (BA) - CCD	135	147	2h04min
PAULO AFONSO (BA) / SPML	XINGÓ (AL) - XGO 500 Kv	52	75	1h10min
	XINGÓ II (AL) - XNG 69 kV	50	77	1h11min
	USINA XINGÓ (AL) - UXG	52	76	1h10min
	BOA ESPERANÇA (PI) - BEA	196	330	4h57min
	PICOS (PI) - PIC	269	319	4h26mim
TERESINA (PI) / SOML	PIRIPIRI (PI) - PRI	149	170	2h30min
IERESIIVA (FI)/ SUML	USINA BOA ESPERANÇA (PI) - UBE	196	330	4h57min
	ELIZEU MARTINS (PI) - ELM	344	491	7h10min
	SÃO JOÃO DO PIAUI (PI) - SJI	362	449	6h10min
	BOM JESUS DA LAPA (BA) - BJS	509	896	12h14min
	BARREIRAS (BA) - BRA	540	957	13h03min
SOBRADINHO (BA) / SBML	IRECÊ (BA) - IRE	234	741	6h24min
SOBRADINHO (BA) / SBNIL	JUAZEIRO II (BA) - JZD	36	56	45min
	SENHOR DO BONFIM (BA) - SNB	127	169	2h18min
	JAGUARARI (BA) - JGR	113	167	2h17min
	ASSU II (RN) - ACD	217	370	5h10min
CAMPINA GRANDE (PB) – SLMG	CURRAIS NOVOS II (RN) - CRD	129	236	3h22min
	MUSSURÉ II (PB) - MRD	112	132	1h21min

	NATAL II (RN) - NTD	178	317	3h11min
	PARAÍSO (RN) - PRS	113	171	2h27min
	SANTANA DO MATOS (RN) – SMD	166	367	5h07min
	SANTA CRUZ II (RN) – STD	115	267	2h22min
SALVADOR (BA) - SSLS	GOVERNADOR MANGABEIRA (BA) – GVM	72	125	1h32min
ARACAJU (SE) - SSMA	OLINDINA (BA) – OLD	144	178	2h28min
DECHEE (DE) CLLD	GOANINHA (PE) – GNN	56	77	54min
RECIFE (PE) - SLLR	RIBEIRÃO (PE) – RIB	70	85	53min
	ANGELIM II (AL) – AGD	85	140	1h56
DIOLARCO (AL) SIMI	ANGELIM (AL) – AGL	85	140	1h56
RIO LARGO (AL) - SLML	PENEDO (AL) PEN	114	160	2h12min
	TACAIMBÓ (PE) – TAC	137	202	2h40min
	EUNÁPOLIS (BA) – ENP	233	298	4h11min
	IBICOARA (BA) – ICA	224	353	5h14min
FUNIL (BA) - SSMF	SANTO ANTÔNIO DE JESUS (BA) – STJ	142	189	2h37min
	ITAPEBI (BA) – ITI	193	250	3h27min
	USINA DE PEDRA (BA) – UPE	92	110	2h04min
	BANABUIU (CE) – BNB	169	217	2h50min
	CAUÍPE (CE) – CPE	40	57	51min
FORTALEZA (CE) - SNLF	MOSSORÓ II (RN) – MSD	197	225	3h03min
FORTALEZA (CE) - SNLF	RUSSAS II (CE) – RSD	139	160	2h02min
	SOBRAL III (CE) – SBT	197	247	3h24min
	SOBRAL II (CE) – SBD	205	250	3h27min
	CUREMAS (CE) – CMA	114	169	1h52min
MILAGRES (CE) - SNMM	USINA DE CUREMAS (CE) – UCR	114	171	1h54min
WILLAGRES (CE) - SIMINI	TAUÁ II (CE) – TAD	207	286	3h52min
	ICO (CE) – ICO	100	124	1h26min

TABELA 3 – DISTÂNCIA DAS SUBESTAÇÕES AOS SEUS SERVIÇOS DE MANUTENÇÃO

Nesse trabalho foi utilizada nuvem de ponto da subestação do Bongi (somente trecho de 69 kV) localizada próxima a sede da empresa. Esse trabalho foi fruto de uma demonstração do equipamento Topcom L-200 realizada pela empresa Santiago & Cintra e posterior modelagem desses pontos pela VIT Engenharia, sendo a primeira responsável por coletar em campo a nuvens de pontos referida. Ambas foram parceiras desses projeto, tido o interesse mútuo em desenvolver e ser pioneiro nessa área de atuação.

1.5. Apresentação

No capítulo 2 fala-se sobre as técnicas de planejamento executivo (PEX) e análise preliminar de risco (APR), Intervenções em barramentos de subestações, Sensoriamento Remoto e Light Detection and Ranging (Lidar), mas conhecido como Laser scanner.

No capítulo 3 é abordada a metodologia aplicada no trabalho, desde instrumento utilizado, local de trabalho, aquisição e tratamento dos dados.

No capítulo 4 é demonstrada a execução de um PEX e APR de uma determinada intervenção utilizando a modelagem de uma subestação.

No capítulo 5 é discutido o resultado do trabalho com análise de custos e de operacionalidade.

Por fim são tecidas conclusões acerca do trabalho, bem como perspectivas e futuros trabalhos.

2. FUNDAMENTAÇÃO TEÓRICA

2.1. Planejamento Executivo (PEX) e Análise Preliminar de Risco (APR)

O Planejamento Executivo (PEX) e Análise Preliminar de Risco (APR) são poderosas ferramentas para trabalhos que possuam riscos relevantes as instalações e integridade física dos trabalhadores. Sua grande vantagem quando comparada a outras técnicas é sua capacidade de quantificação dos riscos.

Na Chesf, especificamente nos trabalhos energizados, existe normatização para nortear o uso do PEX e APR: IM-MN-LT-M.018 – Elaboração de PEX e APR.

A figura 3 e 4 ilustram modelos em branco de PEX e APR respectivamente, bem como seus referidos campos:

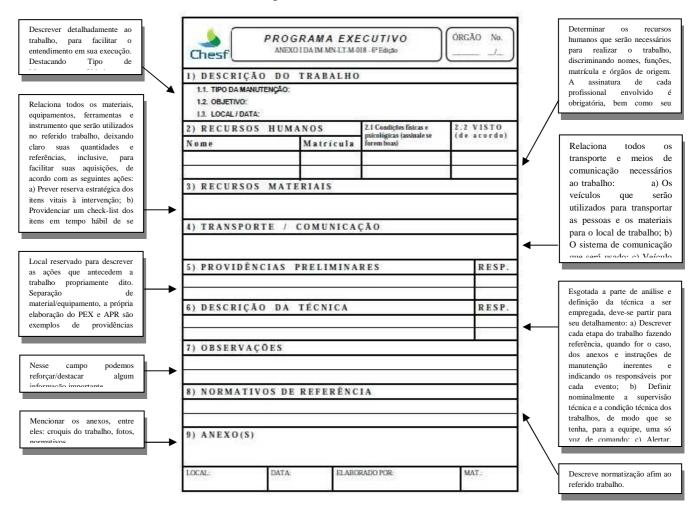
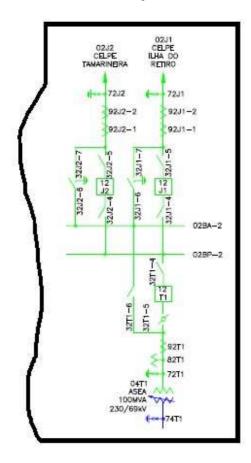


FIGURA 3 – MODELO EM BRANCO DE PEX COM SEUS REFERIDOS CAMPOS


Atividade:			Responsável:			
Instalação:		Orgãos Envolvidos:	<u>I</u>	Data:		
Ação (na atividade de)	Risco (pode ocorrer)	Conseqüência (trazendo como efeito)	Medidas Preventivas (como bloquear ou minimizar o risco)	Graduação dos Riscos (Após adoção das medidas preventivas		
				5	P	R

PRO	SEVERIDADE	I (MINIMA)	II (MARGINAL)	III (CRITICA)
A	(RARA)	DESPREZIVEL	DESPREZIVEL	MODERADO
В	(REMOTA)	DESPREZIVEL	MODERADO	CRITICO
C	(MEDIA)	MODERADO	CRITICO	GRITTEG

FIGURA 4 – MODELO EM BRANCO DE APR

2.2. Intervenções em Barramentos de Subestações

Em subestações de energia elétrica existem uma série de dispositivos e equipamentos, entre eles está o barramento. Podemos enxergar um barramento como o local onde, entra e sai todo o fluxo de energia de uma subestação. Ligado a ele estão, por exemplo, as entradas e saída de linhas e os transformadores. Todas essas ligações são efetuadas por disjuntores e chaves que permitem a conexão e desconexão ao barramento sempre que se faça necessário. A figura 5 ilustra um trecho de uma subestação de 69 kV.

Observe a saída de linhas 02J1, entre seus diversos equipamentos associados estão as chaves 32J1-5 e 32J1-4 e o disjuntor 12J1. A abertura e fechamento desses equipamentos desconectam ou conectam a saída de linha ao barramento 02BP-2.

O mesmo ocorrendo com o transformador 04T1 que é controlado pelas chaves 34T1-4 e 34T1-5 e o disjuntor 14T1

FIGURA 5 – TRECHO DE UMA SUBESTAÇÃO DE 69 kV

Quando se deseja realizar alguma manutenção no disjuntor 12J1, efetua-se uma determinada seqüência de manobra de modo a transferir a saída da linha a ele associada (no caso 02J1) para o barramento auxiliar 04BA-2 e só depois abrir o disjuntor 12J1 e então as chaves 32J1-4 e 32J1-5. Nesse momento o disjuntor encontra-se desconectado do nível de tensão ao qual está submetido (69 kV). Para efetuar sua manutenção é só realizar a seqüencia de aterramento temporário, condição necessária e exigida para todo trabalho desenergizado, e trabalhar no referido equipamento.

O problema consiste quando existe a necessidade de se efetuar manutenção na chave 32J1-4, pois mesmo após aberta um de seus pólos ainda encontra-se conectado ao barramento que por sua vez está energizado com 69 kV. Nesse momento se faz necessário uma intervenção energizada para liberação do pulo (cabo e conector) que conecta o pólo da chave ao barramento. É esse tipo de intervenção o foco dessa monografia. Para esse tipo de intervenção, apesar da normatização existente é fundamental a figura do PEX e APR, tido que cada subestação possui sua peculiar configuração física e todo posicionamento de escadas, andaimes isolantes, bem como os profissionais envolvidos, principalmente o eletricista que irá entrar ao potencial.

2.3. Sensoriamento Remoto

Uma definição bem simplória de sensoriamento remoto seria: "Obtenção de informação sobre um dado alvo sem haver contato físico com ele". A história mostra que a humanidade há tempos se interessa pelo assunto, desde primeiras fotografias que se tem notícia por volta do século 19 até os tempos atuais com os poderosos sensores orbitais que vasculham as mais inóspitas regiões do planeta, o principio basicamente se mantém o mesmo: medir uma determinada radiação emitida ou refletida pelo alvo e tirar conclusões sobre tal.

O sensoriamento remoto é realizado usando um instrumento chamado sensor. A maioria dos sensores registra a Radiação Eletromagnética (REM) emitida pelo Sol (exemplo: luz azul, verde, vermelho e infravermelho próximo) ou emitida pela superfície da Terra (exemplo: infravermelho termal) que é refletida pelo alvo, chamamos de sensoriamento remoto passivo. Há também, os sistemas ativos de sensoriamento remoto que não dependem da energia emitida pelo Sol ou Terra. Essa classe de sensores emite sua própria radiação, sensoriamento remoto ativo. Entre eles os mais comuns são Sonar (Sound Navigation And Ranging - Navegação e Distância pelo Som), Radar (Radio Detection And Ranging - Detecção de Rádio a Distância) e Lidar (Light Detection and Ranging - Detecção de Luz e Distância).

A teoria sobre sensoriamento remoto é bastante vasta e para esse trabalho abordaremos apenas o Sensoriamento Remoto por Lidar, tido o real interesse: Escaneamento de Instalações Elétricas em três dimensões.

2.4. LIDAR

O primeiro Laser Ótico foi desenvolvido em 1960 pela Hughes Aircraft, INC. Suas primeiras aplicações foram levantar topografia de terrenos. Novas aplicações para levantamento tridimensional usando Lidar foram sendo descobertas com a grande vantagem do ganho de produtividade. Trabalhos realizados através de levantamento in situ (exemplo: estação total ou instrumentos GPS) que demandam muito tempo e trabalho ou fotogrametria pode ser substituídos pelo Lidar.

Geralmente as aplicações do Lidar são para sistemas aerotransportados, no entanto nesse trabalho será abordada a utilização de Lidar terrestre para aplicações industriais onde se deseja realizar levantamento de plantas, especificamente instalações elétricas.

São muito incipientes as aplicações de Lidar no setor elétrico Brasileiro. A Cemig (Companhia Elétrica de Minas Gerias) possui levantamento de uma subestação utilizando técnica de modelagem de equipamentos.

As ilustrações das Figuras 6 a 9 são exemplos de aplicações:

Medições Industriais:

FIGURA 6 – MODELAGEM DE AVIÃO (Fonte: Apresentação Santiago & Cintra)

Construção Civil:

FIGURA 7 – TOPOGRAFIA DE PRÉDIO (Fonte: Apresentação Santiago & Cintra)

Patrimônio:

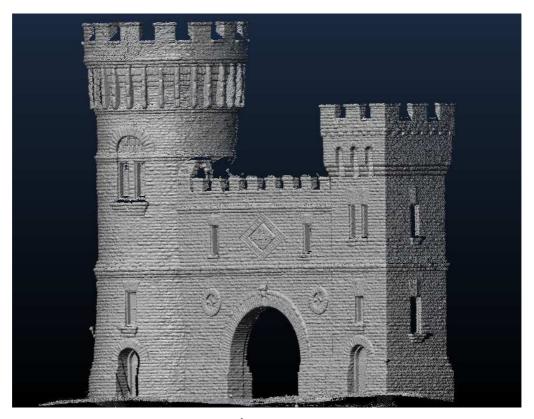


FIGURA 8 – MODELO EM 3D DE PRÉDIO ANTIGO (Fonte: Apresentação Santiago & Cintra)

Forense:

 $FIGURA~9-MODELO~TRIDIMENSIONAL~DA~CENA~DE~UM~CRIME~ {\it (Fonte: Apresentação Santiago~\&~Cintra)}$

2.4.1. Princípio de Funcionamento

O processo tem como princípio básico o tempo de emissão e o retorno de um pulso de laser se denomina *Light Detection and Ranging* (LIDAR) e permite capturar diversos pontos gerando assim coordenadas tridimensionais de uma superfície, objeto ou alvo escolhido.

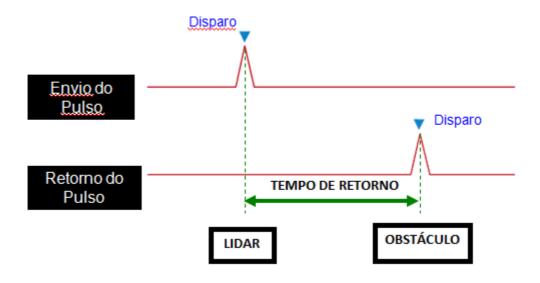


FIGURA 10 – ENVIO E RETRONO DE PULSO DE LASER (Fonte: Apresentação Santiago & Cintra)

O instrumento Lidar consiste de um sistema de controle e um transmissor e receptor. Pulsos de Laser são lançados pelo transmissor em direção ao local desejado e seus retornos são capturados pelo receptor, medindo-se o tempo gasto, calculando-se assim a intensidade do sinal. Esse tempo pode ser calculado pela seguinte equação:

t = 2 R/C

Onde t = tempo de retorno, R distância percorrida e C velocidade da luz.

Usando mecanismos de servo motores o sistema sai varrendo toda a extensão escolhida, podendo girar em 360 grau. A depender do alcance do instrumento utilizado, os pulsos de laser percorrem toda essa distância em busca de obstáculo, sendo sempre refletido assim que encontrá-los. Pode então em uma mesma emissão de pulso laser ter vários retornos medindo assim vários pontos (ver figura 11).

Porem alguns obstáculo são sólidos o suficiente para não deixarem que o pulso laser alcance outros pontos por ele escondido, nesses casos faz-se necessário posicionamento do equipamento em mais de um local de modo a coletar todos os pontos.

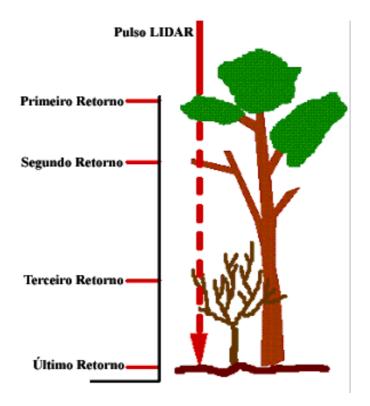


FIGURA 11 – RETORNOS DE PULSO LASER (Fonte: Carneiro, M. C. S. M.)

2.4.2. Processamento dos Dados

O escaneamento realizado pelo Lidar gera um conjunto de dados chamado de nuvens de pontos, tido que para cada retorno do sinal laser enviado é gerado uma informação com as coordenadas (X, Y e Z), intensidade do sinal e por vezes as cores R, G e B.

Cada ponto gerado é referenciado ao ponto inicial na fase de ajuste do equipamento, podendo ser assim esse ponto de controle georeferenciado ou não.

Em geral os equipamentos Lidar geram arquivos com extensão PTX para abrirem nos seus softwares dedicados. No entanto arquivos com outras extensões, tais quais LAS e TXT podem também serem gerados.

De posse desse arquivo de dados deve-se ser realizada a modelagem dos dados executando uma "limpeza" na nuvem de pontos ajudando a torná-la visualmente agradável. As figuras 12 e 13 ilustram respectivamente uma mesma cena com dados brutos (nuvens de pontos) e depois os dados modelados.

Infelizmente no processo de modelagem alguns detalhes da realidade são perdidos, no entanto o uso dos dois modelos pode ajustar algumas perdas, bem como a tendência mostra que cada vez mais desenvolve-se equipamentos de lidar com maior resolução (quantidade de pontos por segundo) apontando para uma melhor modelagem ou até mesmo a exclusão da necessidade da mesma.

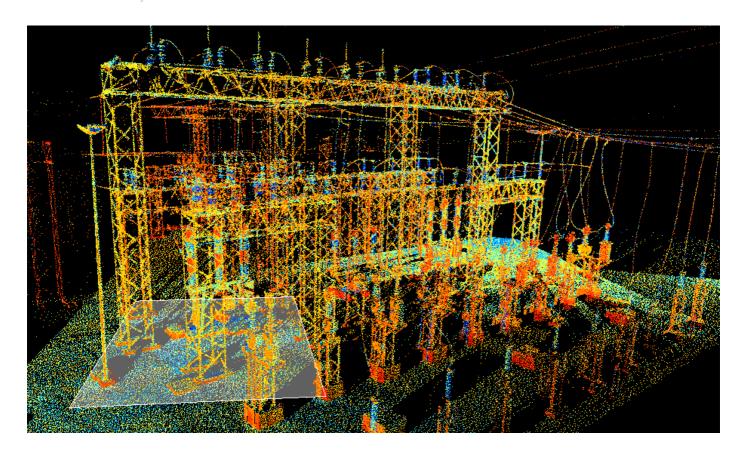


FIGURA 12 – NUVEM DE PONTOS BRUTA DE UMA INSTALAÇÃO ELÉTRICA

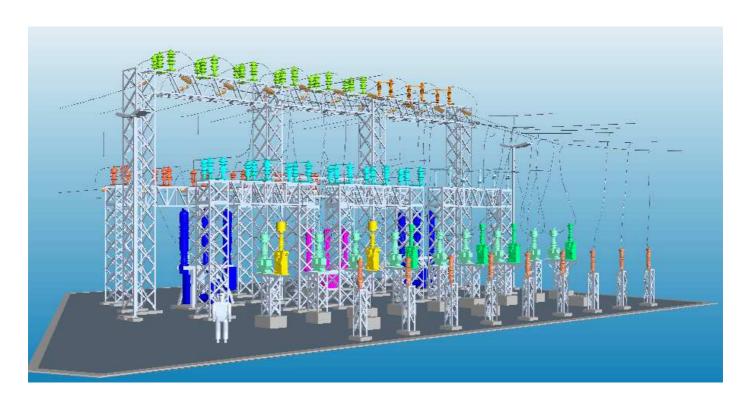


FIGURA 13 – NUVEM DE PONTOS MODELADA