Ked. Dand_1	Link	X Source	Y Source	Х Мар	Y Map	Residual
Green: Band_2 Blue: Band_3	1 2	1,687000 23,230000	28,038000 28,064000	-42,500000 -42,000000	-10,000000 -10,000000	0,00031 0,00030
	4	1,703000	6,185000	-42,500000	-10,500000	0,00031

Figura 26 – Cálculo do Erro Quadrático Médio (RMS) da carta Pilão Arcado

	10 1		(j)		.X
Link	X Source	Y Source	X Map	Ү Мар	Residual
1	1,747000	27,959000	-43,000000	-10,500000	0,00019
2	23,247000	27,942000	-42,500000	-10,500000	0,00019
3	23,222000	6,129000	-42,500000	-11,000000	0,00019
7	1,754000	6,152000	-45,000000	-11,000000	0,00013
<					
10000					
	Link 1 2 3 4 (Link X Source 1 1,74700 2 23,24700 3 23,22200 4 1,75400	Link X Source Y Source 1 1,747000 27,959000 2 23,247000 27,942000 3 23,22000 6,129000 4 1,754000 6,152000	Link X Source Y Source X Map 1 1,747000 27,959000 -43,000000 2 23,24700 27,94900 -42,500000 3 23,222000 6,129000 -42,500000 4 1,754000 6,152000 -43,000000	Link X Source Y Source X Map Y Map 1 1,747000 27,95900 -43,000000 -10,500000 2 23,247000 27,94200 -42,500000 -10,500000 3 23,222000 6,125000 -42,500000 -11,000000 4 1,754000 6,152000 -43,000000 -11,000000

Figura 27 – Cálculo do Erro Quadrático Médio (RMS) da carta Xique-Xique

É realizada a georeferência individual por unidade de carta e define-se na *<Display Area>* o Sistema de Coordenadas do projeto para o Sistema *Córrego Alegre*, que é o Sistema de Coordenadas original das cartas empregadas. Na *<Table of Contents>*, sobre o nome do arquivo da imagem da carta sistemática em utilização, com o mouse em seu *menu* do lado direito, aciona o comando *<Data>*, *<Export Data>*, conforme **Figura 28**, fazendo o mesmo procedimento para todas as 10 unidades de carta.

Editor Task: Create New F	Export Raster Data - MI-1587 RE/	MANSO.TIF
Georeferencing ▼ Layer: MI-1587 REMANS Georeferencing ▼ Layer: MI-1587 REMANS MI-1587 REMANSO.TF RGB ■ Red: Band_1 Green: Band_2 ■ Blue: Band_3	Extent C Data Frame (Current) Pata Frame (Current) Pata Frame (Current) C Selected Graphics (Clipping) Output Raster V Use Renderer Square: Froce RGB Rd	Spatial Reference © Data Frame (Current) © Raster Dataset (Original) Cell Size (cx, cy): © 0,000116327 0,000115006 aster Size (columns, rows): © 47800 5894
	Name P Bands 3 Pixel Depth 3 Lincompressed Size 3 Extent (left, top, right, bottom) (Spatial Reference G Location: C:/Doc Name: MI-153	roperty Bit 0,60 MB 42,5156, -10,1269, -41,9596, -9,4491) CS_Corrego_Alegre uments and Settings\Carol\Meus documentos\CAROL\CUF 7 REMAN Format: TIFF
	Compression rapes. Income	(1-100): Save Cancel

Figura 28 – Exportação de Imagem de Carta em Formato *TIFF* com Sistema de Coordenadas em Córrego Alegre. Exemplo para carta sistemática Remanso.

Com essa etapa realizada, é utilizado esse novo arquivo gerado em formato *TIFF* com Sistema de Coordenadas em Córrego Alegre, para ser mosaicado com as demais 9 cartas sistemáticas também projetadas para o Sistema de Coordenadas de Córrego Alegre. Contudo, antes é necessário recortar as margens da imagem da carta para apenas deixar a parte útil do mapa, e assim não ocorrer sobreposição de informações entre os mapas, e somente ocorrer ligações contíguas.

Para executar o recorte dessa área útil, é necessário construir uma máscara dessa mesma área, para posteriormente aplicar os seguintes comandos do aplicativo *ArcToolbox: <Spatial Analyst Tools>, <Extraction>, <Extract by Rectangle>.* Os comandos anteriormente relacionados permitem a execução do recorte de cada imagem, conforme as **Figuras 29 a 31**, do mapa deixando apenas sua área útil, sem perder sua georeferência.

Figura 29 – Arquivo TIFF da carta sistemática completa no Sistema de Coordenadas em Córrego Alegre

MI-1587 REMANSO: RGB	Input raster	Input raster								
Red: Band_1	MI-1587 REMANSO 1. tif		1							
Green: Band_2	Rectangle				X minimum and y minimum					
Blue: Band_3		i i i i i i i i i i i i i i i i i i i	define the lower-left							
		Тор								
		-9,500000			maximum and v maximur					
	Left	_	Right		define the upper-right					
	-42,500000		-42,000000		coordinates.					
		Bottom		6						
	1	-10,000000	Clear		The coordinates are					
	Output raster		specified in the same map							
	C:\Documents and Settings\Carol\Meus o	locumentos\CAROL\CURSO GEO	CHESF\MONOGRAFIA desenvolv	2	units as the input raster.					
	Extraction area (optional)									
	INSIDE			+						

Figura 30 – Recorte do retângulo que engloba a área útil da carta

Figura 31 – Arquivo *TIFF* da carta sistemática recortada apenas com sua área útil com Sistema de Coordenadas em Córrego Alegre

Esse processamento de recorte da máscara (retângulo) é repetido para todas as 10 (dez) unidades de carta que compõem o Reservatório de Sobradinho, isto é, todas as 10 cartas são recortadas em apenas sua área útil, devidamente georeferenciadas para o Sistema de Coordenadas de Córrego Alegre. A próxima etapa é a execução da mosaicagem das mesmas, segundo a **Figura 32**. Inicialmente, são adicionadas todas as cartas como tema numa mesma *<Table of Contents>*, e na seqüência, no *<ArcToolBox>*, são utilizados os comandos *<Data Management Tools>*, *<Raster>*, *<Raster Dataset>*, *<Mosaic to New Raster>* para mosaicar todas as cartas de uma só vez criando um único arquivo *raster*.

Figura 32 – Mosaico *TIFF* contendo as 10 cartas sistemáticas recortadas apenas em suas áreas úteis para o Sistema de Coordenadas de Córrego Alegre

Nessa etapa, é elaborado um arquivo único contendo uma imagem *TIFF* das cartas da SUDENE na escala 1/100.000, georeferenciada no Sistema de Coordenadas de Córrego Alegre.

Cabe destacar que cada arquivo de carta sistemática em formato *raster* tem em média 85 *Mb*. Ao realizar o processo de mosaicagem, o arquivo único contendo as 10 unidades de cartas sistemáticas unidas, também em formato *raster*, apresenta tamanho 2,08 *Gb*. Sobre o tempo de processamento da operação de mosaicagem para as cartas empregadas nesta monografia, afirma-se que durou cerca de 2 horas de compilação mosaicando todas as 10 cartas de uma só vez, empregando para isso um processador *Intel (R) Atom (TM), CPU N270 @ 1.60 GHz, 1,99 Gb* de *RAM*.

8. EXECUÇÃO DO LEVANTAMENTO BATIMÉTRICO

O Levantamento Batimétrico, realizado no ano de 2009 no Reservatório de Sobradinho, que está sendo utilizado nessa monografia, é resultado de uma das Metas do Projeto de Pesquisa & Desenvolvimento (P&D), coordenado pela Chesf através da Divisão de Gestão de Recursos Hídricos (DORH), e executado pela empresa Hidrocom, com apoio técnico da Universidade Federal de Pernambuco, através do Departamento de Engenharia Civil/Grupo de Recursos Hídricos.

4.1. Projeto de Navegação Batimétrica

O projeto da navegação batimétrica no Reservatório de Sobradinho procedeu-se da seguinte forma:

- Estabelecida a configuração das linhas de navegação batimétrica, que é determinada pelo tipo, forma do corpo d'água, variação do N.A (nível da água) e pela morfologia do fundo. Por isso, durante o levantamento batimétrico de reservatórios, o projeto de navegação, geralmente, é composto por associações de tipos de linhas de navegação (Figura 33);
- Determinada extensão total das linhas de navegação;
- Quantificado tempo para a realização do levantamento batimétrico.

Figura 33 – Tipos de Linhas de Navegação (Fonte: Hidrocom)

No projeto da navegação batimétrica, para definir o tipo e as associações das linhas de navegação é utilizado o conceito de Straškraba; de que reservatórios artificiais são transições entre rios e lagos naturais, permitindo assim separar, de forma conceitual descritiva, o Reservatório de Sobradinho em três zonas (Figura 34):

- Zona Fluvial Caracteriza-se por ser, em determinadas situações mais estreita (em nível baixo), e possuir uma menor profundidade com um alto fluxo afluente;
- Zona de Transição É mais larga que a zona fluvial, mais profunda e tem fluxo menor;

3) Zona Lacustre – É larga e profunda e com fluxo bem reduzido.

Figura 34 - Zonas de Navegação no Reservatório de Sobradinho (Fonte: Hidrocom)

As linhas de navegação batimétrica são configuradas a partir da linha de N.A na cota aproximada de 390 m (**Figura 35**). Foi estimado que devido ao excelente regime de chuvas na bacia hidrográfica do São Francisco, o reservatório atingiria sua cota máxima, cota 392,5 m, até o final do mês de abril, que é uma condição ideal para o levantamento batimétrico. Portanto, a estimativa da extensão das linhas de navegação prevista foi de aproximadamente 3.000 Km de extensão, ou seja 311,56 Km, além dos 2.688,44 Km, inicialmente calculados.

Figura 35 – Configuração das Linhas de Navegação Batimétrica para a Cota aproximada de 390m (Fonte: Hidrocom)

4.2. Levantamento Batimétrico Propriamente Dito

a) Posicionamento por DGPS em Tempo Real

O levantamento batimétrico do reservatório da Barragem de Sobradinho realizou-se com posicionamento por *GPS* (*Global Posicionation System*), no modo *WADGPS* (aumento do alcance da área de correção diferencial via satélite - sistema *OmniSTAR*), cujos resultados de posicionamento possuem precisão submétrica em 68% do tempo que estiver operando, ou por correção diferencial via "*beacom*" - rádio farol, ou pós-processado por estação base de correção (**Figura 36**).

O Sistema *OmniSTAR* presta um serviço, realizado através de um rede global com 90 estações em 45 países, que permite o fornecimento dos dados de correção diferencial, independente da distância da estação base e em tempo real, para aqueles *GPS* habilitados ao uso deste sistema, mediante o pagamento de uma assinatura anual.

Figura 36 – Tipos de Correção DGPS (Correção Diferencial GPS) (Fonte: Hidrocom)

b) Obtenção das Profundidades

Para medição das profundidades utilizou-se uma Ecossonda Digital Multifrequência de Feixe Único (*Single beam*), com precisão centimétrica (**Figura 37**). A Ecossonda é um equipamento que se baseia na medição do tempo gasto por um sinal sonoro, para percorrer a distância entre o transdutor e o fundo de um corpo d'água e o retorno do sinal refletido ao receptor. Sendo v, a velocidade de propagação do som na água, a profundidade h, é dada por:

$$h = 0,5 v \cdot t$$

Onde:

v = 1.500 m/s +/- 3%, dependendo da temperatura da água, da salinidade e da pressão (em relação à profundidade)

t = ao tempo gasto pelo sinal, para ir ao fundo e retornar

Figura 37 – Posicionamento por DGPS e Sondagem Batimétrica com Ecossonda Digital (Fonte: Hidrocom)

c) Aquisição dos Dados de Posição e Profundidade

A navegação realizou-se através do *software Trackmaker*. Para aquisição, armazenamento em arquivos digitais, das amostras *X*, *Y*, *Z* (de posição e profundidade) utilizou-se o *software Bat1*, desenvolvido pela Hidrocom, para realizar a interface e a acoplagem entre os dados de navegação, posição e profundidade obtidos do sistema *DGPS-Max* e Ecossonda *Bathy-500* adquiridos pela CHESF para o projeto (**Figuras 38 e 39**).

Figura 38 – Sistema para Aquisição dos Dados de Posição e Profundidade (Fonte: Hidrocom)

Figura 39 – Software BAT1 para Integração GPS + ECO e Aquisição e Armazenamento dos Dados Batimétricos (Fonte: Hidrocom)

4.3. Pré-Processamento dos Dados Batimétricos

Nas amostras batimétricas são encontradas os seguintes erros, gerados durante a aquisição de dados:

- -"Ruídos" de sondagem ocasionados pela diminuição da energia de alimentação da Ecossonda, ou pela intercepção do feixe da sonda por obstáculos, como galhos da vegetação submersa ou sedimentos do fundo em locais muito rasos;
- -Variação da profundidade causada pela agitação da superfície d'água, em função do vento e a onda;
- -Flutuação do N.A do corpo d'água.

A correção dos dados batimétricos realizou-se com a filtragem dos "ruídos" de sondagem e redução da variação da flutuação do nível d'água com os programas *Filtbat* e *Batcor*. Para a correção da flutuação do N.A utilizou-se os dados das estações limnimétricas (**Figura 40**) existentes e de (04) linígrafos digitais da Hidrocom que foram instalados durante o levantamento batimétrico.

A variação da superfície da água, em função do vento e onda, foi a mais difícil de ser corrigida, na realidade o melhor é evitar o levantamento batimétrico com onda e vento, mas isto nem sempre é possível principalmente em grandes corpos d'água. Contudo, utilizou-se o *software PrevOnda*, desenvolvido pela Hidrocom, que calcula a altura da onda incidente no local, para corrigir profundidade registrada. (**Figura 41**)

Figura 40 – Postos Linimétricos do Reservatório da UHE de Sobradinho (Fonte: Hidrocom)

Figura 41 - Modelo para Previsão de Onda - PrevOnda (Fonte: Hidrocom)

O resultado desse pré-processamento é um arquivo de pontos planialtimétricos, ou seja, com coordenadas $X, Y \in Z$.

9. DEFINIÇÃO DA SUPERFÍCIE SUBMERSA

De posse do arquivo do Levantamento Batimétrico (Figura 42), os pontos coletados são espacializados no Sistema Geodésico original do levantamento, que é o *WGS84*. Posteriormente, esse sistema foi transformado para o Sistema de Coordenadas de Córrego Alegre, que é o empregado no mosaico das cartas sistemáticas da SUDENE/IBGE/DSG.

Os pontos tridimensionais da batimetria são compostos pelas coordenadas latitude, longitude e altitude dos pontos batimétricos. A latitude e longitude foram obtidas por rastreador *GPS*, e a altitude a partir da transformação das profundidades, coletadas pelo ecobatímetro, para altitudes elipsoidais relacionadas aos RRNN do Reservatório de Sobradinho.

0		- (* -) -	Lev	antamento	_Batimetric	o_XYZ LATI	ONG [S	omente leitur	a] [Modo	de Compa	tibilidade] - Micr	osoft Excel		-	e x
Ce	Início	Inserir	Layout d	a Página	Fórmulas	Dados	Revis	ão Exibição	0					🥝 –	σx
[<u>م</u>	Calibri	- 11	• A *	= ;	*	ľ	Geral		Formati Formati	ação Condicional - ar como Tabela -	arsenir + arsenir + arsenir +	Σ · /	7 6	A
(olar	NIS		🔅 - 🗛 -	E B :	目にに	*** *	- % 000	,00 ,00 ,00 ,0	Estilos	de Célula *	Formatar *	Q™ eF	isificar Loca iltrar * Selec	ilizar e
Åre	a de Tr 😼		Fonte	F5	Alin	hamento	5	Número	Fa		Estilo	Células		Edição	
	C2	-	0	<i>f</i> _x 378,8											*
	A	В	С	D	E	F	G	Н	T	J	к	L M	N	0	
1	LONG	LAT	PROF												
2	-42,4644	-10,3064	378,8												
3	-42,4647	-10,3068	378,5												
4	-42,465	-10,3072	378,2												
5	-42,4654	-10,3076	380,5												
6	-42,4656	-10,308	382,8												
7	-42,4658	-10,3085	383,1												
8	-42,4661	-10,309	388												
9	-42,4661	-10,3095	387,599												
10	-42,4662	-10,3101	387,199												
11	-42,4664	-10,3106	388,899												
12	-42,4664	-10,3111	388,199												
13	-42,4663	-10,3117	386,699												
14	-42,4663	-10,3126	388,999												
15	-42,4663	-10,3135	389,299												
16	-42.4662	-10.3144	388.999		(Arrow)										
Pro	nto Scroll	lock	o_Batimetr	ico_XYZ gi	·/ 🖓 /								00%	J	(+
19	Iniciar	6	o 6 °	CAR(DLINA AGRA	м С	2 ArcMa	p	- 🖸 5 p	arte	🔀 Micro	soft Excel - Lev	K 6 8		14:34

Figura 42 – Tabela referente ao Levantamento Batimétrico realizado no Reservatório de Sobradinho em 2009

O mapeamento desenvolvido está no Sistema de Coordenadas de Córrego Alegre, tal como as cartas *raster* da SUDENE para essa região. Essas cartas *raster* têm sua malha de coordenadas definidas, e que não podem ser removidas por ser um arquivo matricial, então é adotado tal sistema de coordenadas para o mapeamento como um todo.

Inicialmente, é mostrado que para o desenvolvimento dessa monografia é utilizado como plataforma de Sistema de Informações Geográfica o *ArcMap 10.0*, anteriormente citado, disponibilizado pela Chesf, conforme mostra a **Figura 43**.

Figura 43 – Tela de apresentação do ArcMap 10.0 utilizado para desenvolvimento da monografia

São adicionados os pontos tridimensionais referentes aos dados batimétricos no *ArcMap* com o Sistema de Coordenadas indefinido, conforme apresentam as **Figuras 44 a 46**. No *ArcMap*, ao inserir os pontos batimétricos tridimensionais, se faz necessário a definição do Sistema de Coordenadas da referida malha de pontos.

Figura 44 – Adição de tabela de dados batimétricos por coordenadas dos pontos tridimensionais, com Sistema de Coordenadas indefinido

Figura 45 - Apresentação da View dos pontos tridimensionais adicionados

Q Untitled - ArcM	Layer Properties	
Eile Edit View Book	General Source Selection Display Symbology Fields Definition Query Labels Joins & Relates HTML Popup	
0 📽 🖬 🚳	Evtent	
• • * * *	Top: -9,179408 ??	F F 0
Editor 🕶 🕨 🖋	Bottom: -10,774518 ??	tical Analyst 🔻
	C Data Source	- 2 - 0
- € Layers - ♥ Levantar	Data Type: XY Event Source Location: D:\DCC CAROL\CURSO GEO CHESP\MONOGRAFIA desenvolvimento\S parte\Le Table: 'Levancamento, Batmetrico_XYZ gr\$' X Field: LOWG Y Field: LAT Has Object-ID Field: No Coordinate System: <undefined> Set Data Source</undefined>	ji
	OK Cancelar Aplicar	
Display Source Sel		• [
Drawing 🗕 📐 💮		
	-43,547	-10,311 Decimal Degrees
🛃 Iniciar	🕼 🥱 🖉 🦈 📓 CAROLINA AGRA_Mo 🔮 mosaico novo teste 🤹 Untitled - ArcMap - Ar	🔍 🔁 🕄 🕥 💭 🗞 14:24

Figura 46 – Propriedades do *layer* dos pontos tridimensionais do levantamento batimétrico com Sistema de Coordenadas indefinido

Apresentação da *<View>*, conforme **Figura 47**, com os pontos tridimensionais referente aos dados batimétricos com sua tabela indicando as coordenadas geográficas e suas respectivas profundidades para cada ponto tridimensional batimétrico.

Figura 47 - Apresentação da View dos dados batimétricos originais, com sua tabela de dados

A partir da aba de Propriedades do *<Data Frame>* é definido o Sistema de Coordenadas do Levantamento Batimétrico para Córrego Alegre. É exportado o dado para o mesmo sistema de coordenadas da *<Data Frame>*, e adicionado a *<View>*. Assim, os pontos tridimensionais referentes à batimetria efetuada no Reservatório de Sobradinho são definidos para o Sistema de Coordenadas de Córrego Alegre, conforme apresentam as **Figuras 48 e 49**.

Figura 48 – Apresentação do *layer* de batimetria, em coordenadas geográficas e convertida as coordenadas em feição pontual do *ArcMap* (*shapefile*)

Figura 49 – Propriedade do layer de batimetria definida para o Sistema de Coordenadas de Córrego Alegre

10. VETORIZAÇÃO DA CURVA DE NÍVEL 400 m SOBRE A CARTA SISTEMÁTICA PARA FORMAÇÃO DA BACIA HIDRÁULICA

Como o levantamento batimétrico foi efetuado apenas até a cota 392,50 m, cota máxima operativa normal do Reservatório de Sobradinho, é adotada a curva de 400,00 m como a curva limite da bacia hidráulica que foi delimitada pela interpolação realizada pelo Modelo Digital do Terreno.

O traçado da curva de 400,00 m é digitalizado em tela, e depois a mesma é discretizada em pontos tridimensionais, onde todos os pontos que formam essa curva têm a altitude de 400,00 m, conforme mostra a **Figura 50**.

Figura 50 – Pontos tridimensionais que representam a curva de nível de 400,00m

De posse da curva de 400,00 m em formato de pontos tridimensionais, são adicionados esses pontos à tabela de pontos tridimensionais resultantes da batimetria executada, conforme **Figura 51**, e em formato espacial, a mesma tabela na **Figura 52**. Esse procedimento é realizado objetivando a realização da interpolação do modelo digital do terreno.

FID	Shape	Id	ORIG FID	PROF	LONG	LAT	
6981	Point ZM	0	122	400	-42,170564	-10,000223	
6982	Point ZM	0	122	400	-42,170188	-10,000669	
6983	Point ZM	0	122	400	-42,169812	-10,001069	
5984	Point ZM	0	122	400	-42,169295	-10,001586	
5985	Point ZM	0	122	400	-42,168966	-10,001891	
6986	Point ZM	0	122	400	-42,168707	-10,002103	
5987	Point ZM	0	122	400	-42,168331	-10,001985	
6988	Point ZM	0	122	400	-42,168073	-10,001421	
5989	Point ZM	0	122	400	-42,168214	-10,000834	
5990	Point ZM	0	122	400	-42,168167	-10,000528	
5991	Point ZM	0	122	400	-42,168143	-10,000082	
5992	Point ZM	0	0	379	-42,46422	-10,306241	
5993	Point ZM	0	0	378	-42,46452	-10,306658	
5994	Point ZM	0	0	378	-42,464836	-10,307058	
5995	Point ZM	0	0	380	-42,465253	-10,307391	
6996	Point ZM	0	0	383	-42,465486	-10,307825	
5997	Point ZM	0	0	383	-42,46567	-10,308308	
5998	Point ZM	0	0	388	-42,465936	-10,308791	
5999	Point ZM	0	0	388	-42,46597	-10,309341	
7000	Point ZM	0	0	387	-42,466086	-10,309891	
7001	Point ZM	0	0	389	-42,466269	-10,310391	
7002	Point ZM	0	0	388	-42,466253	-10,310958	
7003	Point ZM	0	0	387	-42,466136	-10,311558	
7004	Point ZM	0	0	389	-42,466119	-10,312424	
7005	Point ZM	0	0	389	-42,466119	-10,313308	
7006	Point ZM	0	0	389	-42,466069	-10,314174	
7007	Point ZM	0	0	389	-42,465936	-10,315041	
7008	Point ZM	0	0	388	-42,46562	-10,315891	
7009	Point ZM	0	0	387	-42,465303	-10,316741	
7010	Point ZM	0	0	388	-42,46502	-10,317558	
7011	Point 7M	0	0	387	-42 464203	-10.317758	

Figura 51 – Tabela referente à batimetria realizada em 2009 acrescida dos pontos tridimensionais que representam a curva de nível de 400,00m

Figura 52 – Representação dos pontos tridimensionais referentes a batimetria realizada em 2009 e aos que representam a curva de nível de 400,00m

11. INTERPOLAÇÃO DOS PONTOS DA BATIMETRIA COM A CURVA DE NÍVEL DE 400 m

A interpolação dos pontos tridimensionais é realizada utilizando o procedimento *Geostatistical Wizard>*, conforme as **Figuras 53 a 57**, onde são adicionados os parâmetros necessários para execução do modelo de interpolação. Nesse caso é utilizado o *Radial Basis Functions>* (*AGRA*, 2007), utilizando como atributo de modelagem a **Profundidade** coletada no reservatório. O interpolador escolhido teve por base os estudos desenvolvidos na dissertação de Mestrado (*AGRA*, 2007), onde foram analisados os interpoladores disponíveis no aplicativo *ArcMap*, e se concluiu que qualquer que fosse a metodologia matemática aplicada o produto chegaria a um resultado admissível.

As Funções de Base Radial correspondem a um grupo de interpoladores chamados *Splines* que produzem superfícies suaves (*CHIN-SHUNG YANG et. al.*). O princípio das Splines é minimizar a curvatura total da superfície, garantindo-se que a mesma contenha os pontos amostrais, configurando-se como um interpolador Exato (*JAKOB e YOUNG*, 2006). Essa superfície pode ser interpretada como uma membrana de borracha flexível, perfeitamente adaptada à amostra (*ESTRADA e SAFRIET*, 2007). Por causa dessa característica, as *Splines* não são recomendadas para as superfícies com grandes variações de gradientes (*JAKOB e YOUNG*, 2006).

As Funções de Base Radial disponíveis no ArcMap são (AGRA, 2007):

- Thin Plate Spline;
- Spline with Tension;
- Completely Regularized Spline;
- Multiquadric Function;
- Inverse Multiquadric Function.

A Função de Base Radial utilizada nesta monografia é a Função Multiquadrática (*Multiquadric Function*).

🔍 Monografia CarolAgra teste -	ArcMap - ArcInfo			
Eile Edit View Bookmarks Insert S	Geostatistical Wizard: Choose Input Data	and Method	? 🛛	
Image: Second	Methods: Inverse Distance Weighting Global Polynomial Interpolation Local Polynomial Interpolation Redial Basis Functions Kriging Cokriging	Dataset 1 Velidation Input data: 100_Merge Attribute: PROF X field: Shape Y field: Shape Use NODATA value: Image: Comparison of the state of the st		▼ malyst ▼ .ayer: na ④ ▷ ● ● ● ●
	About Radial Basis Functions Radial Basis Functions (RBF) are moderately quick flexible than IDW, but there are more parameter provides prediction surfaces that are comparate to investigate the autocorrelation of the data. Functions make no assumptions about the data.	deterministic interpolators that are exact. They are much more decisions. There is no assessment of prediction errors. The met to the exact form of kirging. Radial Basis Functions do not allow king it less flexible and more automatic than kirging. Radial Basis (Back Next) Finish 41,774	hod you s Cancel -9,073 Decim	segunda-feira, 26 de setembro de 2011
🛃 Iniciar 🔰 🙃 🧿 🧷	* 🙆 7 parte 🔮 CAROLI	NA AGRA_Mo 🧟 Monografia CarolAgr		C & O & 20:47

Figura 53 – Escolha do Método de Interpolação e do Atributo a ser interpolado

QUntitled - ArcMap - ArcInfo							_ 2 🛛
Eile Edit View Bookmarks Insert S	Geostatistical Wizar	d: Choose Input Data a	nd Method		? 🗙		
D 🚅 🖬 🎒 X 🖻 🎕 🗙	Methods:		Dataset 1	/alidation		-	🔄 //2 🖿
🔍 🔍 💥 🎛 🖑 🌒 🗭 🟓	Inverse Distance Weigh Global Polynomial Interp	ting olation	Input data:	🤣 400_Merge	• 🗃		
🛛 Editor 💌 🕨 🖉 💌 Task: Crea	Radial Basis Functions	Jation	Attribute:	PROF		at 🕶	
	Cokriging	Dataset Name: 400_M	erge	?			
		Handling Coincidental Sam	ples		-	-	
⊖ 🥵 Layers ⊖ 🗸 400_Merge	About Radial Basis F Radial Basis Functions flexible than 10W, but provides prediction su to investigate the aut Functions make no as	Two or more sample poin exist at the same location Select a method for hand the coincidental sample p	ts G C R	se Mean emove all se Minimum se Maximum Iclude all set while in this ArcMap OK Cancel	are much more rors. The method is do not allow you bg. Radial Basis		
	Learn more about Radi	al Basis Functions					
Display Source Selection			< Back	Next >	Finish Cancel	-	 ▶
	18			1		-	
		an an I and a constant			-43,041 -8,922 Deci	mal Degrees	
📲 Iniciar 🔰 🙃 🧿 🎓	CAROLINA AG	RA_Mo 🤇 🧟 mosaico n	ovo teste	Untitled - ArcMap -	Ar 🤷 5 parte		< 15:17 G 💭 15:17

Figura 54 – Condição para obtenção de pontos amostrais coincidentes