

UNIVERSIDADE ESTADUAL DA PARAÍBA-UEPB CENTRO DE CIÊNCIAS E TECNOLOGIAS -CCT DEPARTAMENTO DE MATEMÁTICA-DM

ALESSANDRO EVARISTO DE SOUZA

UM ESTUDO SOBRE OS LOGARITMOS E SUAS APLICABILIDADES

ALESSANDRO EVARISTO DE SOUZA

UM ESTUDO SOBRE OS LOGARITMOS E SUAS APLICABILIDADES

Trabalho de Conclusão de Curso Licenciatura Plena em Matemática da Universidade Estadual da Paraíba, como requisito parcial à obtenção do título de Licenciatura Plena em Matemática.

Orientador: Prof^a. Ma. Kátia Suzana Medeiros Graciano.

CAMPINA GRANDE – PB 2018

É expressamente proibido a comercialização deste documento, tanto na forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano do trabalho.

S729e Souza, Alessandro Evaristo de.
Um estudo sobre os logaritmos e suas aplicabilidades [manuscrito] / Alessandro Evaristo de Souza. - 2018.

42 p.

Digitado.

Trabalho de Conclusão de Curso (Graduação em Matemática) - Universidade Estadual da Paraíba, Centro de Ciências e Tecnologia, 2018.

"Orientação : Profa. Ma. Kátia Suzana Medeiros Graciano , Departamento de Matemática - CCT."

1. Matemática. 2. Logaritmo. 3. Logaritmo - Aplicações. I. Título

21. ed. CDD 513.22

Elaborada por Giulianne M. Pereira - CRB - 15/714

BC/UEPB

ALESSANDRO EVARISTO DE SOUZA

UM ESTUDO SOBRE OS LOGARITMOS E SUAS APLICABILIDADES

Trabalho de Conclusão de Curso da Graduação em Licenciatura Plena em Matemática da Universidade Estadual da Paraíba, como requisito parcial à obtenção do título de Licenciatura Plena em Matemática.

Aprovada em: 03/12/2018.

BANCA EXAMINADORA

Prof. Ma. Kátia Sužana Medeiros Graciano (Orientador)
Universidade Estadual da Paraíba (UEPB)

Prof. Dra. Maria Isabelle Silva Dias Yanes Universidade Estadual da Paraíba (UEPB)

Prof. Me. Fernando Luiz Tavares da Silva Universidade Estadual da Paraíba (UEPB)

Dedico este trabalho aos meus pais, a minha mãe Irraquiel Evaristo e ao meu pai Alexandre Pedro, aos meus irmãos, e a Deus por me abrir as portas, e poder caminhar sempre em busca do conhecimento.

AGRADECIMENTOS

Agradeço primeiramente a Deus por me proporcionar o dom da vida, e por sempre ter me dado forças para seguir em frente diante de todas as circunstâncias, agradeço principalmente a minha mãe Irraquiel e ao meu pai Alexandre por me apoiarem, sempre me dando forças para continuar diante de todas as dificuldades, permanecendo ao meu lado nos momentos mais difíceis durante este período. Agradeço por toda educação e carinho para comigo e com meus irmãos, Alessandra, Alex, Alan e Aline Victoria. Serei eternamente grato por tudo que fizeram.

Agradeço a minha namorada Dayany pois foi quem me incentivou bastante para entrar na vida acadêmica, por ser amiga, companheira, pelo seus conselhos que me ajudaram bastante nos momentos de angústias. Aos meus colegas de curso que de alguma forma contribuíram para minha formação, em particular agradeço a Dácio, Bianca, Isabel, Isabelle, Reginaly, Geilza, Jessica. Meu muito obrigado a professora Katia Suzana, por aceitar ser minha orientadora, vou ser grato a UEPB, e aos demais professores do curso de Licenciatura em Matemática, pois contribuíram bastante na minha vida acadêmica e no meu crescimento pessoal e profissional.

Por fim agradeço aos meus avós, José Ivo Evaristo e Anézia Evaristo da Silva (em memória), em especial a minha vó por sempre me apoiar. Lembro-me que todas as vezes quando chegava da Universidade, que reclamava de alguma coisa a senhora dizia, "meu filho siga em frente não desista do seus sonhos, um dia eu ainda lhe vejo formado" hoje a senhora não está fisicamente em nosso meio, mas sei que onde estiver, estará olhando e rezando por mim, vendo esse sonho ser concretizado. Não tenho palavras para descrever tamanha felicidade, e hoje estar podendo realizar esse sonho, o sentimento de dever

cumprido, poder olhar para traz e dizer "eu consegui". É uma satisfação enorme, agradeço a todos que me ajudaram e que Deus os abençoe.

RESUMO

Neste trabalho iremos aborda o estudo sobre os logaritmos, relatando como surgiu este conceito tão importante da matemática. Através de um breve resgate histórico, podemos encontrar os primeiros estudos realizados sobre o assunto, além disso apresentaremos seus conceitos e suas propriedades e consequentemente as demonstrações, finalizando com o principal do trabalho que são as suas aplicações. Também iremos enfatizar a importância que os logaritmos apresentam em outras áreas da ciência através de suas aplicações, ou melhor, a influência que possuem em determinados problemas, uma vez que o logaritmo é um artificio matemático que pode ser empregado em diversas situações multidisciplinares. Diante de um razoável universo de aplicações compreendemos que tal mecanismo pode e deve ser utilizado no processo de ensino e aprendizagem. Em princípio a exposição do conteúdo abordado, seu conceito e suas propriedades serão apresentados de acordo com os livros didáticos por meio dos quais será possível propor uma apresentação simples e objetiva do assunto, tendo em vista fazer com que o leitor tenha uma melhor compreensão através de suas propriedades, definições, e exemplos, no entanto para fixar ainda mais o entendimento e promover mais motivação exploraremos suas aplicações.

Palavras-Chave: logaritmos. História. Aplicações.

ABSTRACT

In this work we will expose the logarithms a bit, we will report how this important concept of mathematics arose, through its historical context where we can find the first studies carried out on the subject, in addition we will present their concepts and their properties and consequently the demonstrations, and the main focus of the work to your applications. The purpose of this paper is to expose the importance of logarithms in other areas of science through their applications, or rather, the influence they have on certain problems. This is because the logarithm is a mathematical artifact that can be used in different situations, when observing such importance can use this mechanism as a stimulus in the teaching and learning process. At first the presentation of the content addressed, its concept and its properties will be presented according to the textbooks through which it will be possible to propose a simple and objective presentation of the subject, in order to make the reader have a better understanding through its properties, definitions, and examples, however to further instill understanding and promote more motivation we will explore its applications.

Keywords: Logarithms. Story. Applications.

LISTA DE ILUSTRAÇÕES

Figura 1: Tabela dos logaritmos decimais A	26
Figura 2: Tabela dos logaritmo decimais B	25
Tabela 1: Tábua dos Logaritmos	13
Tabela 2: Classificação do pH	33

SUMÁRIO

INTRODUÇÃO	10
1 História do logaritmos	1
1.1 Contexto histórico	11
1.2 John Napier	14
1.3 Jobst Burgi	15
2 Logaritmos	17
2.1 Definição	17
2.2 Antilogaritmo	17
2.2.1 Definição	17
2.3 Consequência de definição	17
2.4 Propriedade dos logaritmos	18
2.4.1 Logaritmo do produto	18
2.4.2 Logaritmo do quociente	19
2.4.3 Logaritmo da potência	20
2.5 Cologaritmo	20
2.6 Mudança de base	21
2.6.1 Propriedade	21
2.7 Logaritmo natural	23
2.2.1 Definição	23
2.8 Logaritmo decimal	23
3 Aplicações	29
3.1 O carbono 14	29
3.2 Abalo sísmico	31
3.3 Cálculo do potencial hidrogeniônico pH	32
3.4 Desintegração radioativa	33
3.5 Lei de resfriamento de um corpo	36
Conclusão	39
Referências	40

Introdução

Este trabalho tem como propósito apresentar a importância dos logaritmos, ou melhor, a relação que mantém com suas aplicações. Refere-se a uma pesquisa que está baseada em levantamentos bibliográficos com o objetivo de expor o foco principal, que são suas aplicações.

Privilegiado por ter um papel significativo em outras ciências, hoje é mais valorizado por meio de suas consideráveis aplicações a quem é direcionado o estudo desta pesquisa, tendo como objetivo desenvolver um estudo sobre os logaritmos de maneira mais aprofundada, onde por meio de suas aplicações será mostrado a sua importância. Além disso, temos como propósito auxiliar na concepção do seu conceito, por meio das aplicações e explicar como são introduzidas no cotidiano. Para que isso aconteça é necessário que as escolas realizem um estudo inicial mais aprofundado sobre o conteúdo. Uma alternativa seria a utilização de recursos apropriados, como os materiais manipuláveis e meios tecnológicos em sala de aula.

A motivação para escolha deste tema é mostrar o mérito de suas aplicações em algumas das muitas áreas que empregam esta ferramenta matemática, como a Astronomia, Física, Geografia, Medicina dentre tantas outras. Será ressaltado o seu valor para humanidade através de suas funções onde vários fenômenos da natureza são solucionados. Este trabalho está dividido da seguinte forma:

No primeiro capítulo vamos falar um pouco da história dos logaritmos, ou seja, vamos relatar seu surgimento, descrever qual era sua finalidade na época do seu desenvolvimento, falaremos um pouco dos primeiros matemáticos que desenvolveram seus estudos sobre os logaritmos e são reconhecidos até hoje.

No segundo capítulo apresentaremos as definições e propriedades dos logaritmos, como também as demonstrações das respectivas propriedades e definições, e mais, alguns exercícios resolvidos para facilitar sua compreensão.

No terceiro e último capítulo vamos apresentar o foco principal desta pesquisa, as suas aplicações, de modo que, vamos expressar algumas delas, como o carbono 14, abalo sísmico, lei de resfriamento de um corpo, desintegração radioativa e o cálculo do potencial hidrogeniônico pH.

1 História dos logaritmos

Neste capítulo vamos conhecer um pouco da história dos logaritmos, sua origem e finalidade, destacando as primeiras pessoas que estudaram este assunto e tiveram os primeiros trabalhos publicados.

1.1 Contexto histórico

Com o passar do tempo a ciência cada vez mais foi se aperfeiçoando, tendo em vista obter sucesso na construção de aparelhos ou instrumentos que pudessem resolver os mistérios que a humanidade deseja solucionar. No entanto com os avanços da astronomia, navegação, engenharia e até mesmo do comércio, percebeu-se que os cálculos aritméticos estavam ficando cada vez mais complexos, na época as operações como as multiplicações, divisões, potenciações e até mesmos a extração de raízes, deviam ser solucionadas utilizando-se de mecanismos que facilitassem os cálculos. uma das ferramentas utilizadas nestas resoluções era a tábua das funções trigonométricas, buscando transformar a multiplicação em soma e a divisão em subtração.

"A tábua das funções trigonométricas, que existiam desde o século II, apresentadas por Cláudio Ptolomeu, permitiam realizar produtos através de somas e são exemplos de como os matemáticos contornavam esses problemas".(Percorari, 2013,p.20).

Para transformar um produto em soma utilizava-se as formulas trigonométricas:

 $2\cos.A.\cos.B = \cos.(A+B) + \cos.(A-B)$

 $2 \operatorname{sen.A.cos.B} = \operatorname{sen.(A+B)} + \operatorname{sen.(A-B)}$

 $2\cos A. \sin B = \sin(A+B). \sin(A-B)$

 $2 \operatorname{sen.A.sen.B} = \cos(A-B).\cos(A+B)$

As fórmulas passaram a ser largamente usadas por matemáticos e astrônomos perto do fim do século XVII como um método de conversão de produtos em somas e diferenças. O método tornou-se conhecido como prostaférese, a partir de uma palavra grega que significa "adição e subtração". Uma divisão pode ser tratada da mesma maneira. (Eves, 2004).

Como foi ressaltado acima as funções trigonométricas tinham como intuito transformar as operações aritméticas da multiplicação e divisão em resultados mais simples como adição e subtração, mas com o decorrer do tempo essa ferramenta não estava mais sendo muito eficiente pois os cálculos estavam ficando cada vez mais complexos, tornando-se inviável, quando se tratava de operações com mais de três termos, foi a partir deste momento que surgiram os primeiros relatos sobre os logaritmos.

Um escocês chamado John Napier obteve conhecimento sobre o trabalho do cientista alemão Miguel (Michel) Stifel, através de uma obra publicada com o título de "Arithmética integra" em 1544. A mesma trazia pela primeira vez resultados com potencias de qualquer número racional. O exemplo mais especifico é uma das propriedades da potenciação, a regra do produto de potência de mesma base:

$$a^n$$
. $a^m = a^{n+m}$ para todo n, m racionais.

Aproximadamente no ano de 1594, Napier deu início ao estudo dos logaritmos, tendo como motivação a "Arithmética integra" onde dedicou 20 anos da sua vida ao seus estudos, e mais ou menos no ano de 1614 realizou a publicação do seu trabalho. O raciocínio que havia desenvolvido em sua façanha era o seguinte, inicialmente ele pensou na continuidade de potências consecutivas de um número qualquer, tal qual como na "Arithmética integra" Nesta sequência era possível notar o destaque que a adição e a subtração dos expoentes das potências coincidiam com a multiplicação das respectivas potências, mas noentanto uma continuidade de potências inteiras de uma determinada base não podiam ser utilizadas em algumas áreas da ciência como na computação pois deixava algumas falhas nas interpolações, como por exemplo a base do número dois.

Sabendo dos esforços de Napier para desenvolver os estudos sobre os logaritmos o Dr. John Carig, o aconselhou a fazer uso de um novo recurso, o da prostaférese, mecanismo bastante utilizado nos observatórios astronômicos e na computação.

Absorvendo os conselhos do Dr. Carig deixou-se guiar por esse processo, visto que é a melhor forma de explicar porque deu origem a uma série de logaritmos, restrito apenas pelo seno dos ângulos, dessa forma tentando acabar de vez com as enormes multiplicações e divisões , onde discorda respeitosamente do método da prostaférese, pois este dispositivo apresentava algumas desvantagens que podiam ser encontradas no produto de três ou mais elementos, entre outras ineficiências, Napier querendo encontra uma solução para os problemas aritméticos utilizou uma sucessão de progressões aritméticas:

E geométricas:

$$b, b^2, b^3, b^4, ..., b^m, ..., b^n, ...$$

Seja o produto b^m. bⁿ= b^{m+n}, que são termos da segunda progressão, que estão relacionados aos termos da primeira progressão. Querendo preservar os termos da progressão geométrica, com objetivo de fazer uso das interpolações para completar as ausências que há entre os termos, vamos observar como funcionava o logaritmo de Napier através do seguinte exemplo.

Podemos explicar esse trabalho de uma maneira bem simples, Napier tendo em vista evitar as ausências entre os termos deixados pelas progressões, considerou o número b bem próximo de 1, estabelecendo para b o seguinte valor $b = 1 - \frac{1}{10^{5}} = 0,99999999$. Com isso os elementos crescentes da progressão logo se aproximam, buscando encontrar uma estabilidade e evitar as casas decimais ele realizou a multiplicação de cada potência por 10^{7} , resultando no seguinte:

N = $10^7(1 - \frac{1}{10^7})$ L, onde L representava o logaritmo de N. Acontece que o logaritmo Napier tinha os seguintes valores o $10^7 = 0$ e o de $10^7(1 - \frac{1}{10^7}) = 0,9999999$ é 1. Assim dividindo N e L por 10^7 , por conseguinte encontrara um sistema de logaritmos na seguinte base $\frac{1}{10^7}$, isto é, $(1 - \frac{1}{10^7})^7$ que se aproxima do $\lim_{n \to \infty} (1 + \frac{1}{n})^n = \frac{1}{10^7}$, devemos ressaltar que Napier não trabalhava com o sistema de bases dos logaritmos, devido ele ter uma definição diferente da que temos hoje, onde construiu as suas tabelas numéricas e não geométricas.

Napier teve sua primeira obra publicada relacionada aos logaritmos em 1664 em um texto que tinha como título "Descrição da maravilhosa leis do logaritmo", onde neste mesmo trabalho ele apresenta uma tabua para explicar o seno dos ângulos. (Eves, 2004).

A tábua de logaritmo apresentada por Napier tinha como objetivo simplificar as operações, e vamos apresenta-la na tabela a seguir:

Tabela 1: Tábua dos logaritmos

1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Fonte:(Eves, 2014)

A mesma funcionava da seguinte maneira: para realizar o produto entre os algarismos com dois ou mais fatores, da primeira linha poderíamos apenas somar os termos equivalentes da segunda linha e ver quem é o seu correspondente isto é, ao realizar uma multiplicação entre dois termos da primeira linha, por exemplo $16 \times 64 = 1024$, para obter este resultado era necessário apenas somar os termos que correspondem aos valores da primeira linha na segunda ou seja, 4+6=10, e o resultado desta adição é proporcional a 1024. A divisão segue o mesmo raciocínio, mas com uma diferença, na divisão não se soma os termos equivalentes, pelo contrário é feita uma subtração, ou melhor dizendo, $\frac{64}{32} = 2$, onde 32 é similar a 5 na segunda linha e 64 corresponde a 6, e a subtração entre esses dois é a seguinte, 6 - 5 = 1 o que equivale a 2.

Outro matemático que também contribuiu bastante para o surgimento dos logaritmos foi o Suíço Jobst Burgi. Há relatos que ressaltam que os primeiros estudos foi ele que tenha dado início, sendo primeiro a trabalhar com essas simplificações tendo um método independente do Napier apesar de terem princípios semelhantes, mas Burgi só teve seu trabalho publicado seis anos após os resultados de Napier, sua obra inicialmente foi vista no lançamento de um livro na cidade de Praga na República Tcheca e tinha o seguinte título, Arithmetische und geometrische Progress-Tabuien. Isso nos aponta que ambos, tanto Napier como Burgi partiram de uma mesma influência, ou seja, procederam de uma mesma característica, as sequências aritméticas e geométricas e mais, supostamente inspirados pelo mesmo processo o da prostaférese, havia uma diferença entre os dois, a qual era evidente na nomenclatura e nos valores utilizados nas respectivas obras, ou melhor, ao contrário de Napier, Burgi procedia de um número um pouco maior que um, o número de Burgi é da seguinte forma $1 + \frac{1}{100^4}$, e invés de multiplicar as potências por 10^7 ele multiplicava por 10^8 , e ainda ocorria uma leve mudança, na sua tábua Burgi multiplicativa as potencias por 10 ou seja, $N=10^8(1+\frac{1}{10^4})^L$, onde ele denomina 10L como o número "vermelho" e N o número "preto", ou seja, essas eram as cores que esses números eram impressos na tabela de Burgi. Agora se dividirmos todos os números pretos por 10⁸ e os vermelhos por 10⁵ vamos obter um sistema de logaritmos naturais por exemplo:

Burgi considera os seguintes valores para o número preto 10000000000 e o número vermelho 230270,022 e se movermos a vírgula de posição teremos o que representa o Ln10 = 2,30270022. Tendo em vista que esse resultado tem uma aproximação com o valor moderno, basta lembra que $(1 + \frac{1}{10^4})$ é diferente de $\lim_{n \to \infty} (1 + \frac{1}{n})^n$, mesmo havendo uma coincidência nos valores que eram de quatro casas decimais. E mais uma simples observação na diferença entre os dois, Burgi fazia uma abordagem mais algébrica enquanto Napier relatava uma abordagem mais geométricas sobre os logaritmos. Um detalhe bastante importante que devemos ressaltar é que hoje os logaritmos são escritos como expoente, logo, $y = b^x$, onde x é o logaritmo de y na base b. Um contraste na história da matemática é que os logaritmos tenham surgido antes dos expoentes.

1.2 John Napier

John Napier nasceu no castelo de Merchiston, perto de Edimburgo, Escócia, no ano de 1650, quando o seu pai tinha apenas 16 anos. Passou grande parte de sua vida nos patrimônios de sua família, aos 13 anos começou a estudar em St. Andrews sendo esse o seu primeiro

contato com a faculdade, concentrando seus estudos nesta época na religião, onde o mesmo dedicou parte de sua vida a contestações políticas e religiosas. Um exemplo disso é que Napier era definido um anticatólico e considerava o próprio papa como anticristo, seguidor das ações de John Knox e Jaime I, consequentemente algum tempo depois teve sua primeira obra publicada, foi o livro A Plaine Discouery of the Whole Reuelation of Saint Iohn, onde foi lançado em 1593 e o mesmo alcançou 21 edições. Depois de um tempo tentando sair dos conflitos religiosos e políticos começou a dedicar parte do seu tempo a estudar matemática e com isso deixou grandes contribuições pra a história da matemática como:

(1) a invenção dos logaritmos; (2) um engenhoso dispositivo mnemônico, conhecido como regra das partes circulares, para reproduzir fórmulas usadas na resolução de triângulos esféricos; (3) pelo menos duas fórmulas trigonométricas de um grupo de quatro conhecidas como analogias de Napier, úteis na resolução de triângulos esféricos obliquângulos; (4) a invenção de um instrumento, conhecido como barras de Napier ou ossos de Napier, usado para efetuar mecanicamente multiplicações, divisões e extrair raízes quadradas de números. (Eves,2014)

Napier era um rico lorde escocês, que propôs grande parte do seu tempo a facilitar os cálculos matemáticos para os astrônomos e os demais cientistas aplicados da época, e mais deu inúmeras contribuições para a ciência, sendo considerado um matemático brilhante, pois conseguia ter uma visão além da sua época, acreditava que com o passar dos anos a humanidade era capaz de criar maquinas que facilitassem o trabalho humano, inclusive descreveu algumas delas, como por exemplo, a criação do tanque de guerra, submarinos, entre outras, no entanto essa visão do futuro de Napier, fez com que muitas pessoas acreditassem que ele era louco, mas hoje temos certeza que ele não era nenhum louco, inclusive foi possível ver essas engenhosidade por ele citadas na primeira grande guerra mundial.

1.3 Jobst Burgi

Jobst Burgi, um suíço da cidade de Lichtensteig, nasceu no ano de 1522 em uma vila que tinha aproximadamente 400 habitantes onde o seu avô era o gestor desta vila, na região suíça de Toggenburgu.

Segundo relatos Burgi começou seus estudos sobre os logaritmos no ano de 1588 e só foi publicá-los em 1620 seis anos após Napier. Não é conhecido apenas por ser o primeiro a trabalhar com os logaritmos, mas por ser o construtor de aparelhos astronômicos, além de instrumentos científicos revolucionários, ele é considerado o pai do "segundo" por ter sido o primeiro a construir um relógio que marcasse o tempo a partir do segundo. Seus trabalhos

com os logaritmos eram independentes dos de Napier. Há descrições de que os estudos sobre esta obra tinham se iniciado muito antes de serem publicados. Em cartas, o cientista Johannes Kepler relata ter utilizado os procedimentos matemáticos de Burgi para dar um grande avanço a Astronomia, no sentido das observações feitas ao sol, a lua e aos planetas de nosso sistema solar. Kepler ficou impressionado com as técnicas na resolução das frações decimais e com as tábuas dos logaritmos, e mais, ressalta que Burgi tenha desenvolvido essa fórmula muito antes de Napier e só não teve as suas obras publicadas na época por não ter conhecimento da língua cientifica que era o latim, pois não possuía domínio sobre a mesma.

Desta forma fizemos retrospectiva sobre há origem do conteúdo em tela, sua utilização, bem como destacamos os principais personagens que desenvolveram esse belo trabalho, reconhecidos até hoje.

.

2 Logaritmos

Neste capítulo vamos apresentar a definição do logaritmo, demonstraremos suas propriedades, apresentaremos os logaritmos naturais, decimais e por fim a mudança de base.

2.1 Definição: Sendo α e b números reais e positivos, com $\alpha \neq 1$, chama-se logaritmo de b na base α , o expoente que se deve dar a base α de modo que a potência obtida seja igual a b.

Em símbolos: Se α , b, $\in \mathbb{R}$, $0 < \alpha \neq 1$ e b > 0, então.

$$\log_{\alpha} b = x \Leftrightarrow a^{x} = b$$
.

Em $\log_{\mathbf{z}} \mathbf{b} = \mathbf{x}$, dizemos:

a é a base do logaritmo, b é logaritmando, x é o logaritmo.

Exemplos:

a)
$$\log_{\pi} 9 = 2 \implies 3^2 = 9$$

b)
$$\log_2 32 = 5 \implies 2^5 = 32$$

c)
$$\log_2 \frac{1}{8} = -3 \Longrightarrow 2^{-3} = \frac{1}{8}$$

2.2 Antilogaritmo.

2.2.1 Definição: Sendo α e b números reais e positivos, com $\alpha \neq 1$, se o logaritmo de b na base α é x, então b é o antilogaritmo de x na base α .

Em símbolos: Se α , b, $\in \mathbb{R}$, $0 < \alpha \neq 1$ e b > 0, então

$$\log_a b = x \Leftrightarrow b = \text{antilog}_a x$$

Exemplos:

- a) O antílo g_2 2 = 4 pois log_2 4 = 2
- b) O antilo $g_4 2 = 16$ pois $log_4 16 = 2$
- c) O antilo $g_{\frac{1}{2}} 4 = \frac{1}{16}$ pois o $\log_{\frac{1}{2}} \frac{1}{16} = 4$

2.3 Consequência da definição.

1°) O logaritmo da unidade em qualquer base é igual a zero.

$$\log_{\pi} 1 = 0.$$

2°) O logaritmo da base em qualquer base é igual a um.

$$\log_{\alpha} \alpha = 1$$
.

3°) A potência de base α e expoente $\log_{\alpha} b$ é igual a b.

$$a^{\log_a b} = b$$

A justificação desta propriedade está no fato de que o logaritmo de **b** na base **a** é o expoente que se deve dar a base **a** para a potência obtida ficar igual a **b**.

4°) Dois logaritmos em uma mesma base são iguais se, e somente se, os logaritmandos são iguais.

$$\log_{\alpha} b = \log_{\alpha} c \Leftrightarrow b = c$$

Demonstração:

$$\log_{\alpha}b = \log_{\alpha}c \Leftrightarrow \alpha^{\log_{\alpha}c} = b \Leftrightarrow c = b.$$

2.4 Propriedades dos logaritmos.

2.4.1 Logaritmo do produto.

Em qualquer base α tal que $0 < \alpha \ne 1$, o logaritmos de dois fatores reais é igual à soma dos logaritmos dos fatores, isto é:

Se
$$0 < \alpha \neq 1$$
, $b > 0$ e $c > 0$, então:

$$\log_{\alpha}(b \cdot c) = \log_{\alpha}b + \log_{\alpha}c.$$

Demonstração:

Inicialmente vamos considerar $\log_{\alpha} b = x$, $\log_{\alpha} c = y$ e $\log_{\alpha} (b \cdot c) = z$, agora vamos mostrar que z = x + y.

Por definição temos o seguinte:

$$\log_{\alpha} b = x \Longrightarrow a^{x} = b$$
, $\log_{\alpha} c = y \Longrightarrow a^{y} = c e \log_{\alpha} (b \cdot c) = z \Longrightarrow a^{z} = b \cdot c$

Assim,

$$\alpha^z = \alpha^x \cdot \alpha^y \Longrightarrow \alpha^z = \alpha^{x+y} \Longrightarrow z = x+y.$$

Observações.

1°) Esta propriedade pode ser entendida para o caso do logaritmo do produto de n ($n \ge 2$) fatores reais e positivos, isto é:

Se
$$0 < \alpha \neq 1$$
 e b_1 , b_2 , b_3 , ..., $b_n \in \mathbb{R}^*_+$ então,

$$\log_{\alpha} (b_1 \cdot b_2 \cdot b_3 \cdot ... \cdot b_n) = \log_{\alpha} b_1 + \log_{\alpha} b_2 + \log_{\alpha} b_3 + \cdots + \log_{\alpha} b_n$$

Demonstração:

i) Vamos provar por indução sobre n.

Seja n = 2 a propriedade é verdadeira, então

$$\log_{\alpha}(b_1 \cdot b_2) = \log_{\alpha}b_1 + \log_{\alpha}b_2$$

ii) Vamos supor que a propriedade é válida para k ≥ 2 termos, logo

$$\log_{\alpha} (b_1 \cdot b_2 \cdot b_3 \cdot \dots \cdot b_k) = \log_{\alpha} b_1 + \log_{\alpha} b_2 + \log_{\alpha} b_3 + \dots + \log_{\alpha} b_k$$

Provaremos que a propriedade é válida para n = k + 1.

$$\log_{\alpha}(\boldsymbol{b}_1 \cdot \boldsymbol{b}_2 \cdot \boldsymbol{b}_3 \cdot \dots \cdot \boldsymbol{b}_{k^*} \cdot \boldsymbol{b}_{k+1}) = \log_{\alpha}\boldsymbol{b}_1 + \log_{\alpha}\boldsymbol{b}_2 + \log_{\alpha}\boldsymbol{b}_3 + \dots + \log_{\alpha}\boldsymbol{b}_k + \log_$$

Sabemos que,

$$\log_{\alpha}(b_{1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k} \cdot b_{k+1}) = \log_{\alpha}[(b_{1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) \cdot b_{k+1}] = \log_{\alpha}(b_{1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot b_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot b_{2} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot h_{3} \cdot h_{3} \cdot \dots \cdot b_{k}) + \log_{\alpha}(b_{k+1} \cdot h_{3} \cdot h_{3} \cdot$$

2°) Notemos que, se b > 0 e c > 0 por conseguinte b - c > 0 logo:

 $\log_{\alpha}(b \cdot c) = \log_{\alpha}b + \log_{\alpha}c$, onde $0 < \alpha \neq 1$, entretanto se soubermos que $b \cdot c > 0$, então vale a seguinte propriedade,

$$\log_{\alpha}(b \cdot c) = \log_{\alpha}|b| + \log_{\alpha}|c| \cos 0 < \alpha \neq 1.$$

Exemplos:

a)
$$\log_5 (4 - 7) = \log_5 4 + \log_5 7$$

b)
$$\log_3 [2 \cdot (-5) \cdot (-6)] = \log_3 2 + \log_3 [-5] + \log_3 [-6]$$

c)
$$\log_3 \left[4 \cdot \left(-\frac{1}{2}\right) \cdot \left(-\frac{2}{3}\right)\right] = \log_3 4 + \log_3 \left|-\frac{1}{2}\right| + \log_3 \left|-\frac{2}{3}\right|$$

2.4.2 Logaritmo do quociente.

Em qualquer base α (0 < $\alpha \neq$ 1), o logaritmo do quociente de dois números reais positivos é igual a diferença entre os logaritmo do dividendo e o logaritmo do divisor, ou seja:

Se
$$0 < \alpha \neq 1, b > 0$$
 e $c > 0$, então:

$$\log_{\alpha} \left(\frac{b}{c} \right) = \log_{\alpha} b - \log_{\alpha} c.$$

Demonstração:

Seja $\log_{\alpha} b = u$, $\log_{\alpha} c = v$ e $\log_{\alpha} \left(\frac{b}{c}\right) = w$, queremos provar que w = u - c. assim:

$$\begin{aligned} \log_{\alpha} b &= u \Longrightarrow \alpha^{u} = b, \log_{\alpha} c = v \Longrightarrow \alpha^{v} = c \text{ e } \log_{\alpha} \left(\frac{b}{c}\right) = w \Longrightarrow \alpha^{w} = \frac{b}{c}, \log o \\ \alpha^{w} &= \frac{\alpha^{u}}{\alpha^{v}} \Longrightarrow \alpha^{w} = \alpha^{u-v} \Longrightarrow w = u-v. \end{aligned}$$

Observações.

1°) Vamos considerar b = 1, logo

$$\log_{\alpha} \left(\frac{1}{c} \right) = \log_{\alpha} 1 - \log_{\alpha} c \Longrightarrow \log_{\alpha} \frac{1}{c} = -\log_{\alpha} c$$

2°) Agora se b > 0 e c > 0 implica que $\frac{b}{c} > 0$, daí é válida a seguinte identidade

$$\log_{\alpha} \left(\frac{b}{c} \right) = \log_{\alpha} b - \log_{\alpha} c \text{ onde } 0 < \alpha \neq 1$$

Basta saber que $\frac{b}{a} > 0$, por conseguinte obtemos:

$$\log_{\alpha} \left(\frac{b}{a} \right) = \log_{\alpha} \|b\| - \log_{\alpha} \|c\|, \text{ com } 0 < \alpha \neq 1.$$

Exemplos:

a)
$$\log_3\left(\frac{3}{4}\right) = \log_3 3 - \log_3 4$$

b)
$$\log_5 \left(\frac{7}{8}\right) = \log_5 7 - \log_5 8$$

c)
$$\log_2\left(\frac{1}{2}\right) = \log_2 1 - \log_2 2$$

2.4.3 Logaritmo da potência.

Em qualquer base α (0 < $\alpha \neq 1$), o logaritmo de uma potência real positiva e expoente real é igual ao produto do expoente pelo logaritmo da base da potência.

Ou seja: Seja
$$0 < \alpha \neq 1, b > 0$$
 e c $\in \mathbb{R}$, assim, $\log_{\alpha} b^{c} = c \cdot \log_{\alpha} b$

Demonstração:

Expressando $\log_{\infty} b = x e \log_{\infty} b^{c} = y$ vamos mostrar que $y = c \cdot x$.

Temos que:

$$\log_{\alpha} b = x \implies \alpha^{x} = b \text{ e } \log_{\alpha} b^{c} = y \implies \alpha^{y} = b^{c} \text{ daí.}$$
$$\alpha^{y} = (\alpha^{x})^{c} \implies \alpha^{y} = \alpha^{x \cdot c} \implies y = x \cdot c.$$

Observações.

1[®]) Desta propriedade sucede o seguinte corolário:

Em qualquer base α (0 < $\alpha \neq 1$), o logaritmo da raiz enésima de um número real positivo é igual ao produto do inverso do índice da raiz pelo logaritmo do radicando.

Ou melhor: Seja
$$a (0 < a \neq 1), b > 0$$
 e $n \in \mathbb{N}^*$ assim, $\log_a \sqrt[n]{b} = \log_a b^{\frac{1}{n}} = \frac{1}{n} \cdot \log_a b$.

2°) Seja b > 0 e $b^c > 0$, $\forall c \in \mathbb{R}$, é válida a seguinte propriedade,

 $\log_{\alpha} b^{c} = c \cdot \log_{\alpha} b$, basta saber que $b^{c} > 0$ daí obtemos o seguinte: $\log_{\alpha} b^{c} = c \cdot \log_{\alpha} \|b\|$.

Exemplos:

a)
$$\log_2 5^3 = 3 - \log_2 5$$

b)
$$\log_4 \sqrt[5]{3} = \log_4 3^{\frac{1}{5}} = \frac{1}{5} \cdot \log_4 3$$

c)
$$\log_3 \left(\frac{4}{5}\right)^2 = \log_3 4^2 - \log_3 5^2 = 2 \cdot \log_3 4 - 2 \cdot \log_3 5$$

2.5 Cologaritmo.

Chamamos de cologaritmo de um número b com $b \in \mathbb{R}$ e b > 0 numa base a com $a \in \mathbb{R}$ e $0 < a \neq 1$, ao oposto logaritmo de b na base a.

Em símbolos:

Se
$$0 < \alpha \neq 1$$
 e $b > 0$, então, colog_a $b = -\log_a b$.

Demonstração: Vamos fazer a seguinte consideração,

$$\operatorname{colo} g_{\alpha} b = -\log_{\alpha} b \Longrightarrow \operatorname{colo} g_{\alpha} b = (-1) - \log_{\alpha} b \Longrightarrow \operatorname{colo} g_{\alpha} b = \log_{\alpha} b^{-1} \Longrightarrow \operatorname{colo} g_{\alpha} b = \log_{\alpha} \frac{1}{b}$$

Portanto o cologaritmo de um número, é o logaritmo do seu inverso na mesma base.

Exemplos:

a)
$$colog_2 4 = -log_2 4 = log_2 \frac{1}{4}$$

b)
$$colog_3 6 = -log_3 6 = log_3 \frac{1}{6}$$

c)
$$\log (\frac{5}{6}) = \log 5 - \log 6 = \log 5 + \cos 6$$
.

2.6 Mudança de base

Há ocasiões em que os logaritmos estão em bases diferentes necessitam serem transformados para uma única base conveniente.

Na aplicação das propriedades operatórias os logaritmos devem estar todos numa mesma base. Agora vejamos o processo que permite transformar o logaritmo de um número positivo em uma certa base conveniente.

2.6.1 Propriedade

Se a, b e c são números reais positivos com a e c diferentes de 1, então tem-se o seguinte:

$$\log_{\alpha} b = \frac{\log_{\alpha} b}{\log_{\alpha} a}$$

Demonstração:

Vamos considerar o fato de que, $\log_{\alpha} b = x$, $\log_{\alpha} b = y$ e $\log_{\alpha} a = z$, com $z \neq 0$ pois $\alpha \neq 1$. Daí mostraremos que $x = \frac{y}{z}$.

Logo,

$$\log_a b = x \Rightarrow a^x = b$$
, $\log_c b = y \Rightarrow c^y = b$ e $\log_c a = z \Rightarrow c^z = a$,

Então,

$$(c^{z})^{x} = a^{x} = b = c^{y} \Rightarrow z \cdot x = y \Rightarrow x = \frac{y}{z}.$$

Exemplos:

a) log₂ 7 converter para base 3, temos:

$$\log_2 7 = \frac{\log_3 7}{\log_3 2}$$

b) $\log_3 6$ converter para base 5, temos:

$$\log_3 6 = \frac{\log_3 6}{\log_3 3}$$

c) log_5 8 converter para base 7, temos:

$$\log_5 8 = \frac{\log_7 8}{\log_7 5}$$

Observação.

A propriedade da mudança de base também pode ser apresentada da seguinte maneira: Se a, b e c são números reais positivos com a e c diferentes de 1, logo obtemos o seguinte:

$$\log_{\alpha} b = \log_{c} b \cdot \log_{\alpha} c$$

Demonstração:

A prova desta propriedade é de imediato, devemos apenas transformar o $\log_{c} b$ para a base α , isto é:

$$\log_c b \cdot \log_\alpha c = \frac{\log_c b}{\log_\alpha c} \cdot \log_\alpha c = \log_c b.$$

Consequências.

1°) Se a e b são números reais positivo e diferentes de 1, tem-se:

$$\log_{\alpha} b = \frac{1}{\log_{h} \alpha}$$

Demonstração:

Devemos converter o log_a b para a base b, obtemos o seguinte:

$$\log_{\alpha} b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$

2°) Se α e b são números reais positivos com α diferentes de 1 e β é um número real não nulo, tem-se:

$$\log_{\alpha} \beta \ b = \frac{1}{\beta} \cdot \log_{\alpha} b.$$

Demonstração:

Vamos considerar duas situações.

1°) Se b = 1, temos:

$$\log_{\alpha} 1 = 0$$
 e $\log_{\alpha} 1 = 0$, então $\log_{\alpha} 1 = \frac{1}{6} \cdot \log_{\alpha} 1$

2°) Se $b \neq 1$, temos:

$$\log_{\alpha} b = \frac{1}{\log_b \alpha^{\beta}} = \frac{1}{\beta} \cdot \frac{1}{\log_b \alpha} = \frac{1}{\beta} \cdot \log_{\alpha} b.$$

Exemplos:

a)
$$\log_4 6 = \log_{2^2} 6 = \frac{1}{2} \cdot \log_2 6$$

b)
$$\log_9 5 = \log_{3^2} 5 = \frac{1}{2} \times \log_3 5$$

c)
$$\log_{27} 7 = \log_{3^8} 7 = \frac{1}{3} \cdot \log_3 7$$

2.7 Logaritmos naturais.

Os logaritmos naturais ou logaritmos neperianos, são assim denominados graças ao escocês John Napier, pois foi o primeiro a publicar um trabalho sobre os logaritmos, onde esses logaritmos tem como base o número θ conhecido também como o número de Euler cujo seu valor é aproximadamente $\theta = 2,71828...$, um número irracional. O fato de ser denominado como logaritmo natural, dar-se por muitos problemas da natureza serem solucionados devido a utilização do número θ em várias expressões.

2.7.1 Definição: Seja o logaritmo de um número **x**, com **x** > 0, o logaritmo desse número **x** na base **e**, onde é representado da seguinte forma:

Demonstração. Inicialmente vamos considerar o número x positivo, logo:

$$\log_g x = \frac{\log_g x}{\log_g x} \Rightarrow \log_g x = \frac{\log_g x}{0.45} \Rightarrow \log_g x = \frac{1}{0.45} \cdot \log_x \Rightarrow \log_g x = 2.3 \cdot \log_x$$

Exemplos:

a) Seja $\log 5 = 0.70$ vamos determinar $\ln 5$.

$$\ln x = 2.3 - \log x \implies \ln 5 = 2.3 - \log 5 \implies \ln 5 = 2.3 - 0.70 \implies \ln 5 = 1.65$$
.

b) Seja $\ln 0.02 = -3.9$ determine o $\log 0.02$.

Se
$$\ln x = 2.3$$
 - $\log x$, então:

$$\ln x = 2,3 - \log x \implies \log x = \frac{\ln x}{2,3} \implies \log 0,02 = \frac{\ln 0,02}{2,3} \implies \log 0,02 = \frac{-3,9}{2,3} \implies \log 0,02 = -1,70$$

2.8 Logaritmos Decimais

Com o objetivo de calcular as operações aritméticas, antes do surgimento da calculadora o sistema de logaritmos mais utilizado era o de base 10, ou seja os logaritmos decimais.

Uma notação que é bastante utilizada log, que indica um logaritmo de base 10, isto é, logo escrevemos log x em vez de log₁₀ x, sabemos que a conexão entre os logaritmos decimais e os logaritmos naturais é dada da seguinte maneira,

$$\log x = \frac{\ln x}{\ln 10}$$
, para todo $x > 0$.

Os cientistas com a intenção de simplesmente ter uma ideia de ordem e grandeza dos números que são utilizados, usam de uma notação para escrever um número decimal, chamada de notação científica, todo número positivo x é dado na forma,

$$x = a \cdot 10^{n}$$

Onde $1 \le a < 10$ e n é um número inteiro (positivo, negativo ou zero).

Dentre os diversos sistemas de logaritmos, estudaremos com particular interesse o sistema de logaritmos de base 10.

- l) Lembramos as principais propriedades da função logarítmica de base 10.
 - 1°) log 1 = 0
 - 2°) log 10 = 1

$$3^{\circ}$$
) $x > 1 \Longrightarrow \log x > 0$, $0 < x < 1 \Longrightarrow \log x < 0$

II) Característica e Mantissa

Qualquer que seja o número real x que consideremos, estará compreendido entre duas potências de 10 com expoente inteiros consecutivos.

Exemplos:

a)
$$x = 0.05 \implies 10^{-2} < 0.05 < 10^{-1}$$

b)
$$x = 0.253 \implies 10^{-1} < 0.253 < 10^{0}$$

c)
$$x = 4.55 \implies 10^{0} < 4.55 < 10^{1}$$

Assim dado x > 0, existe um $\varepsilon \in \mathbb{Z}$ tal que:

$$10^{c} \le x \le 10^{c+1} \Longrightarrow \log 10^{c} \le \log x < \log 10^{c+1} \Longrightarrow c \le \log x < 10+1.$$

Podemos afirmar que:

$$\log x = c + m$$
, onde $c \in \mathbb{Z}$ e $0 \le m < 1$.

Isto é, logaritmo de x, é a soma de um número inteiro c com um número decimal m não negativo e menor que 1.

O número inteiro \mathfrak{C} é por definição a característica do logaritmo de \mathfrak{C} e o número decimal m $\{0 \le m < 1\}$, é por definição a mantissa do logaritmo decimal de \mathfrak{C} .

III) Regras da característica

A característica do logaritmo decimal de um número ▼ real positivo será calculado por uma das duas regras seguintes.

i) Regra 1 (x > 1)

A característica do logaritmo decimal de um x > 1 é igual ao número de algarismo de sua parte inteira, menos 1.

Justificativa.

Seja x > 1 e x tem $\{n+1\}$ algarismos na sua parte inteira, então temos:

$$10^n \le x < 10^{n+1} \implies \log 10^n \le \log x < \log 10^{n+1} \implies n \le \log x < n+1$$
 isto é, a característica de $\log x$ é n.

Exemplos:

- a) $\log 4.5 \Longrightarrow c = 0$
- b) $\log 34, 56 \implies c = 1$
- c) $\log 255 \Longrightarrow c = 2$
- ii) Regra 2 (0 < x < 1)

A característica de um logaritmo decimal de um número 0 < x < 1 é o oposto da quantidade de zeros que precedem o primeiro algarismo significativo.

Justificativa.

Seja 0 < x < 1 e x tem n algarismos zeros precedendo o primeiro algarismo não nulo, temos então:

$$10^{-n} \le x < 10^{-n+1} \Longrightarrow \log 10^{-n} \le \log x < \log 10^{-n+1} \Longrightarrow -n \le \log x < -n+$$
, isto é, a característica do $\log x$ é $-n$.

Exemplos:

- a) $\log 0.3 \implies c = -1$
- b) $\log 0.05 \implies c = -2$
- c) $\log 0.007 \implies c = -3$

IV) A mantissa é obtida através das tábuas dos logaritmos ou tabelas.

Em geral a mantissa é um número irracional e por esse motivo as tábuas de logaritmos são tabelas que fornecem os valores aproximados dos logaritmos dos números inteiros, geralmente de 1 a 10 000.

Ao procurarmos a mantissa de um logaritmo decimal x, devemos lembrar da seguinte propriedade:

i) Propriedade da mantissa

A mantissa do logaritmo decimal de x não se altera se multiplicarmos x por uma potência de 10 com expoente inteiro.

Demonstração:

Para provarmos esta propriedade mostraremos que p ∈ Z logo a diferença.

$$(\log (x - 10^p) - \log x) \in \mathbb{Z}.$$

De fato:

$$\log (x \cdot 10^0) - \log x = \log \left(\frac{10^p}{x}\right) = \log 10^p = p \in \mathbb{Z}.$$

Uma consequência importante é:

Os logaritmos de dois números cuja representação decimal diferem apenas pela posição da vírgula têm mantissas iguais.

Assim os logaritmos decimais de 2; 200; 2 000; 0,2; 0,002 têm todos a mesma mantissa 0,3010 mas as características são respectivamente 0, 2, 3, -1, -3. Em seguida são apresentadas as tábuas dos logaritmos.

Figura 1: tabela dos logaritmos decimais A

N	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
2	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
3	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
4	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
6	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
8	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
9	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	555
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	589
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	601
10	6021	6031	6042	6053	6064	6075	6085	6096	6107	611
11	6128	6138	6149	6160	6170	6180	6191	6201	6212	622
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	632
13	6335	6345	6355	6365	6375	6385	6395	6405	6415	642
14	6435	6444	6454	6464	6474	6484	6493	6503	6513	652
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	661
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	671
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	680
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	689
19	6902	6911	6920	6928	6937	6946	6955	6964	6972	698
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	706
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	715
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	723
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	731
54	7324	7332	7340	7348	7356	7464	7372	7380	7388	739
N	0	1	2	3	4	5	6	7	8	9

Figura 2:(Iezzi, 1977)

N	0		2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
30	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
51	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
52	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
54	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
37	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
38	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9150	9165	9170	9175	9180	9186
B3	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
35	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
B7	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
N	0	1	2	3	4	5	6	7	-8	,9

Figura 2: Tabela dos logaritmos B

Fonte:(Iezzi, 1977)

V) Exmplos de aplicações da tábua de logaritmos:

a) calcular log 34,5

Temos que a carateristica da mantissa é o número de algarismos da parte intera subtraindo 1, logo, a caracteristica é 1

$$\log 34.5 = 1 + 0.5502 = 1.5502$$

b) log 0,025

Assim a caracteristica é -2 e a mantissa é 0,3979, logo:

$$\log 0.025 = -2 + 0.3979 = -1.6021$$

Entretanto, é usual escrevermos -2 + 0,3979 sob a forma 2,3979; onde a figura explicitamente a mantissa do logaritmo e a característica é -2 é substituida pela notação 2.

Dizemos que 2,3979 é forma mista ou preparada do log 0,025 e -1,6021 é a forma negativa do log 0,025.

c) calcular o antilog 1,7435

Consideremos x = antilog 1,7435 temos:

log 1,7435 como a mantissa é 0,7435 encontraremos na tábua o número 554, mas temos que a característica do log x é 1, então temos o seguinte:

$$x = 55, 4.$$

d) calcular o antilog -1,3716; temos:

$$x = antilog -1,3716.$$

Devemos transformar o logaritmo na forma negativa para forma mista preparada, pois na tábua a mantissa é sempre positiva. Essa transformação é obtida adicionando 1 a sua parte decimal e subtraindo 1 da sua parte inteira, o que evidentemente não altera o número negativo, assim, temos:

$$-1,3716 = -1 - 0,3716 = -1 - 1 + 1 - 0,3716 = -2 + 0,6284 = 2,6284$$
 assim:

 $\log x = -1,3716 = 2,6284$. Como a mantissa é 0,6284 encontramos o número 425, mas como a característica do $\log x$ é -2, temos:

$$x = 0.0425$$
.

Neste capítulo vimos as provas de algumas das definições dos logaritmos, algumas observações, e para entendermos o conceito e a definição foram apresentados os exemplos, conhecemos a definição de logaritmos suas propriedades consequências, utilizando uma linguagem simples e objetiva, para um bom entendimento do leitor.

3 Capítulo Aplicações.

Como já vimos no capítulo 1, a invenção dos logaritmos veio no intuito de facilitar os cálculos aritméticos, e à medida em que se avançava nesses estudos percebeu – se que este tema podia ser aplicado em diversas áreas de pesquisa como a Física, Geografia, Química, Medicina, etc. Visando solucionar os problemas em questão, hoje a grande utilidade dos logaritmos são suas aplicações, as quais, neste capítulo serão apresentadas.

3.1 O carbono 14.

O carbono 14 é indicado por C¹⁴, um isótopo radioativo do carbono, formado na atmosfera devido ao bombardeio da terra por raios cósmicos. Através dos tempos, a quantidade do C¹⁴ na atmosfera tem – se mantido constante porque sua produção é compensada com sua desintegração. Assim os seres vivos absorvem e perdem o C¹⁴ de modo que, em cada espécie, a taxa de C¹⁴ também se mantem constante. O carbono 14 se desenvolve nos vegetais à partir do processo de fotossíntese e absorvido pelo outros animais através da ingestão, direta ou indireta de vegetais.

Quando um ser morre, a absorção cessa mas o C¹⁴ nele presente continua a desintegrar – se. Este fato pode ser usado para determinar a idade de um fóssil ou de um objeto muito antigo feito de madeira.

Para isto, precisamos saber que a média vida do C^{14} é de 5730 anos, logo a constante de desintegração é definida da seguinte forma: seja α a taxa de desintegração de qualquer elemento radioativo quando se sabe a sua meia idade, que é dado por T_0 desse elemento, daí sabe – se que a massa deste elemento é dividida pela metade, com relação a T_0 , portanto obtemos a seguinte expressão,

$$M(T) = M_0 \cdot e^{-\alpha t_0}$$

onde M é o número de núcleos radioativos do instante t, e α é considerada a constante de decaimento, que varia para cada isótopo, como M (T) = M_0 é a quantidade inicial de substancias radioativas considerada, daí quando não sabemos quem é a substancia radioativa, o primeiro passo é determinar o valor da constante α , esse processo é feito através da característica da 'meia-vida" de cada isótopo, como sabemos a meia vida do carbono-14 é aproximadamente 5730.

Agora para determinar a constante de decaimento α, vamos utilizar a meia idade do carbono-14.

Como M (T) =
$$M_0 = \mathbb{C}^{-\infty}$$
 para t = 5730 anos, vamos ter M(5730) = $\frac{1}{2} = M_0$, então,

$$M(T) = M_0 * e^{-\alpha t_0}$$

$$\frac{1}{2} * M_0 = M_0 * e^{-\alpha t_0}$$

$$e^{-\alpha t_0} = \frac{1}{2}$$

Agora, aplicando ln em ambos os membros, teremos,

$$\operatorname{Ln}\left(\frac{1}{2}\right) = \operatorname{ln}\left(\mathbb{E}^{-\alpha \mathbb{E}_{\mathbb{Q}}}\right) \Rightarrow \operatorname{ln}\left(1\right) - \operatorname{ln}\left(2\right) = -\alpha T_0 \Rightarrow$$

$$-\operatorname{ln}\left(2\right) = -\alpha T_0 \Rightarrow T_0 = \frac{\operatorname{Im}\left(2\right)}{\alpha} \Rightarrow \alpha = \frac{\operatorname{Im}\left(2\right)}{\epsilon_{\alpha}},$$

Logo,

$$\alpha = \frac{4m(2)}{5730} = \frac{0.693}{5730} \approx 1,20968094 \times 10^{-4}/\text{anos}.$$

Exemplo:

Uma das datações mais conhecidas e polêmica da história realizada pelo método do carbono 14, foi a datação do santo sudário de Turim, em 1988. Com autorização do vaticano cientistas do museu britânico realizaram o procedimento. O santo sudário tinha aproximadamente as seguintes medidas, 4,36m de comprimento e 1,10m de largura, e segundo a igreja foi o manto que envolveu Jesus cristo após sua crucificação, era um tecido constituído de fibras de linho. Com o objetivo de descobrir a idade aproximada do sudário, esse processo foi realizado com fragmentos da borda do santo sudário por meio da datação por carbono, fragmentos esses que levaram os cientistas erroneamente à acreditarem que a idade do tecido estava entre os anos de 1260 a 1390, mas isso aconteceu pelo fato de que, com o passar dos tempos o sudário passou por vários acontecimentos que levavam a sua desintegração. Para recuperar o tecido o sudário passou por algumas restaurações sem que perdesse a sua verdadeira identidade, e devido a esse processo amostras de tecidos recolhidas da borda eram obviamente mais novos que o tecido original.

Mostraremos aqui como foi feito esse procedimento para descobrir a idade do santo sudário de Turim.

Dados do museu britânico indicam que as fibras de linho do tecido, apresentavam um percentual de 92% a 93% do carbono-14 original. Assim a função que determina a quantidade de substâncias radioativas do carbono-14 é a seguinte,

$$M(T) = M_0 * e^{-0.00012037 x_0}$$

Logo a razão de carbono-14 que vai permanecer após anos é,

$$\frac{M(T)}{M0} = e^{-0.00012037\epsilon},$$

Agora vamos aplicar o logaritmo natural em ambos os membros temos,

$$\ln \left[\frac{M(T)}{M0} \right] = \ln e^{-0.00012037k}$$

$$-0.00012097t = \ln \left[\frac{M(T)}{M0} \right]$$

$$t = \frac{\ln \left[\frac{M(T)}{M0} \right]}{-0.00012097}$$

daí vamos tomar como a razão de decaimento $\frac{M(T)}{MD}$ sendo 0,93 e 0,92, obtemos o seguinte,

$$t_1 = (\frac{-1}{0.00012097}) \cdot \ln(0.93) \approx 600 \text{ anos}$$

$$t_2 = (\frac{-1}{0,00012097})$$
 ln $(0,92)$ 8 689 anos.

Portanto quando foi realizado o primeiro teste do santo sudário em 1988, a idade do sudário estava em um intervalo de 600 a 689 anos. Sendo assim a origem dele estava entres os anos de 1260 e 1388. Dessa forma, aceitando a veracidade do carbono-14, o sudário não poderia ser de Jesus cristo.

3.2 Abalo sísmico.

Um exemplo de abalo sísmico mais conhecido, são os terremotos, ou seja, são tremores de terras ocasionados pela movimentação das placas tectônicas, localizadas na crosta da Terra. Com a movimentação dessas placas, o impacto das mesmas é inevitável, proporcionando então um acumulo de pressão e uma descarga de energia, que ganha intensidade e forma de ondas sísmicas, caracterizando assim um terremoto.

A forma que é determinada a intensidade dos terremotos e a sua magnitude é o cálculo através da escala Richter, uma escala logarítmica na base 10 que surgiu no ano de 1935 e foi desenvolvida pelos sismólogos Charles Francis Richter e Breno Gutenberg. Os dois faziam parte da Califórnia institute of technology.

A fórmula matemática para calcular a magnitude dos abalos sísmicos pode ser dada da seguinte maneira,

$$M = \log_{10}(A.f) + 3.30$$

onde,

M significa a magnitude do terremoto registrada no sismógrafo, A representa a amplitude da onda na escala Richter e f representa a frequência da onda. Para calcular a energia liberada por um terremoto utilizamos a seguinte forma:

$$I = \frac{2}{3} \cdot \log\left(\frac{E}{E_0}\right).$$

onde I varia de 0 a 9, \mathbb{E} é a energia liberada em $\frac{k_{WW}}{k}$ e $\mathbb{E}_{0} = 7 \cdot 10^{-3} \cdot \frac{k_{WW}}{k}$.

Para determinar a amplitude das ondas registradas pelo sismógrafo, a unidade utilizada é o micrômetro (µm) e a frequência é o Hertz(Hz)

Exemplos:

a) Os sismógrafos marcaram ondas com amplitude de 800 pm com uma frequência de 0,3Hz. Para calcular a Magnitude deste terremoto, vamos utilizar a forma vista acima,

Resolução: Magnitude

$$M = \log_{10}(A \cdot f) + 3,30$$

$$M = \log_{10}(800 \cdot 0,3) + 3,30$$

$$M = \log_{10}(240) + 3,30$$

Onde o $\log 240 = 2, 38, dai,$

$$M = 2,38 + 3,30$$

 $M = 5,68$.

b) Qual a energia liberada por um terremoto de intensidade 8 na escala Richeter ? Resolução: temos que I = 8, logo

$$8 = \frac{2}{3} \cdot \log \left(\frac{E}{E_0} \right)$$

$$12 = \log \left(\frac{E}{7 \cdot 10^{-3}} \right)$$

$$10^{12} = \frac{E}{7 \cdot 10^{-3}}$$

Logo,
$$\mathbf{E} = 7 - 10^{-3} - 10^{12} = 7 - 10^9$$

3.3 Cálculo do potencial hidrogeniônico PH.

O potencial hidrogeniônico ou quantidade de cátions H^+ ou $H_{\mathfrak{F}}O^+$ de uma solução é uma forma de classificarmos a mistura em ácida, básica ou neutra. A classificação de determinadas substâncias é feita através de uma expressão logarítmica, e quanto mais o valor do PH diminui, a substância se torna mais ácida, isto é definida através do logaritmo negativo, ou seja;

$$pH = -\log [H^+].$$

Daí podemos classificar o pH da seguinte maneira:

Tabela 2: Classificação do pH

рН	Solução
0 a 7	Ácida
7	Neutra
7 a 14	Básica

Fonte(Pecorrari, 2013)

Exemplos;

a) Uma solução de concentração igual a 0,001 mol . L^1 , por exemplo, nos informa que o seu pH=3.

Solução:

$$0,001 \text{ mol} \cdot L^1 = 10^{-2} \text{ mol} \cdot L^1$$
 $10^{-2} \text{ mol de } H_3O^{1+} \dots 1000 \text{ ml}$

$$pH = -\log[H_3O^{1+}]$$

$$pH = -\log[10^{-2}]$$

$$pH = -(-2)$$

$$pH = 2.$$

Observação: os cálculos acima também nos levam à conclusão de que, a cada unidade de pH diminuída, a solução fica com 10 vezes menos íons H_3O^+ . Se temos uma solução com pH igual a 2 e com pH igual a 3, por exemplo, a primeira possui dez vezes mais íons hidrônio do que a segunda.

b) Uma xícara de chá tem concentração de íons H₃O⁺ igual a 7⁻³ mol/l, qual o seu pH?

$$pH = -\log[H_3O^+]$$

 $pH = -\log[7^{-3}]$
 $pH = -(-3) - \log 7$
 $pH = 3 - \log 7$
 $pH = 2,53$

Assim o pH da xícara é de 2,5, logo é uma solução ácida.

3.4 Desintegração radioativa

Os átomos de uma substância radioativa como o rádio ou urânio possui uma tendência natural a se desintegrarem, emitindo partículas e transformando-se em outras substâncias não radioativas. Assim sendo, com o passar do tempo a quantidade de substância original diminui aumentando consequentemente a massa da nova substância transformada. Isto é feito de tal

maneira que, num determinado instante a quantidade de matéria que se desintegra de um corpo radioativo é proporcional a massa da substância original presente no corpo naquele instante. A constante de proporcionalidade α é determinada experimentalmente. Cada substância radioativa tem sua constante de desintegração α .

Consideremos um corpo de massa M_0 , formada por uma substância radioativa cuja a taxa de desintegração é α . Se a desintegração se processasse intensamente, no fim de cada segundo M_0 , a massa no tempo t = 0, decorrido o tempo t = 1 segundo, haveria uma perda de α M_0 unidades de massa restando apenas a massa. E pode ser representada da seguinte forma,

$$M_1 = M_0 - \alpha M_0 = M_0(1 - \alpha).$$

Agora decorrendo 2 segundos, a massa restante seria,

$$M_2 = M_1(1-\alpha) = M_0(1-\alpha)^2$$

Em geral, passados s segundos, restaria a massa $M_{\pi} = M_{0}(1 - \alpha)^{s}$.

No entanto as coisas não se passam assim, pois na desintegração radioativa se processa continuamente. Procurando uma aproximação melhor para o fenômeno, consideremos um inteiro n > 0, e suponhamos que a desintegração se dá sobre um intervalo de $\frac{1}{\pi}$ de segundo.

Depois da primeira fração $\frac{1}{x}$, a massa do corpo é reduzida a seguinte forma:

$$M_0 - (\frac{\pi}{m}) - M_0 = M_0 (1 - \frac{\pi}{m}).$$

Decorrido 1 segundo, teria acontecido n desintegrações instantâneas, e efetuado n reduções, assim restaria do corpo a massa $M_{\mathbb{Q}}(1-\frac{\pi}{2})^n$. Dividindo o intervalo [0, 1] em um número n cada vez maior de partes iguais, chegaremos a conclusão de que, ao final de um segundo a massa do corpo ficará reduzida a:

$$\lim_{n \to \infty} M_0 \left(1 - \frac{\alpha}{n} \right)^n = M_0 \cdot e^{-\alpha}.$$

Se quisermos calcular a massa ao fim do tempo t segundos, deveremos dividir o intervalo [0, t] em n partes iguais, em cada intervalo a perda de massa será de $M_0 \times \frac{act}{n}$. Logo a expressão que fornece a massa após t segundos é:

$$M(t) = M_{\bullet} - e^{-\alpha t}.$$

Na realidade a constante α é determinada a partir de um número básico chamado de meia vida da substância. A meia vida de uma substância radioativa é o tempo necessário para que se desintegre na metade da massa de um corpo formado por aquela substância.

Se tivermos um certo conhecimento que determinado elemento radioativo, tem meia vida igual t_0 unidades de tempo, isso significa que uma unidade massa desse elemento se reduz a metade do tempo t_0 . Isto é,

$$\frac{1}{2} = e^{-\alpha t}$$

Agora vamos aplicar os logaritmos em ambos os membros:

$$\ln\left(\frac{1}{2}\right) = -\alpha t$$

Logo,

$$\ln (1) - \ln (2) = -\alpha t$$

- $\ln (2) = -\alpha t$

Assim,

$$\alpha = \frac{\ln (2)}{\pi}$$

À partir daí é possível determinar a taxa de desintegração α quando se conhece a meiavida da substância no instante t, e de maneira análoga é possível determinar a meia-vida de uma substância t em função da constante α , da seguinte forma:

$$t = \frac{\ln{(2)}}{\alpha}.$$

Exemplo:

a) Num laboratório durante um experimento, certa substância radioativa vazou contaminando assim o ambiente, que imediatamente foi isolado. Sabendo que essa substância se desintegra à uma taxa de 0,2 ao ano e que o ambiente só pode ser liberado quando a substância estiver reduzida a $\frac{1}{5}$ da massa inicial, daqui a quantos anos este ambiente estará seguro para ser utilizado?

solução: sabemos que a expressão que nos permite resolver esse problema é dada por:

$$M(t) = M_{0} - e^{-\alpha t}.$$

A substância tem que ser reduzida a $\frac{1}{5}$ da quantidade inicial. Logo $M = M_0 e M(t) = \frac{M}{5}$, e ainda a desintegração é dada a uma taxa de 0,2 ao ano. Assim a constante $\alpha = 0,2$. Daí vamos substituir esses valores na expressão inicial, obtendo o seguinte:

$$\frac{M}{5} = M^* e^{-0.2t},$$

Isto é,

$$\frac{1}{5} = e^{-0.2t}$$

Aplicando In em ambos os lados:

$$\ln\left(\frac{1}{5}\right) = -0.2t$$

$$\ln (1) - \ln (5) = -0.2t$$
$$- \ln (5) = -0.2t$$

E pelas tábuas dos logaritmos o valor de ln (5) ≈ - 1,6, logo,

$$-1.61 = -0.2t$$

$$t = \frac{-1.61}{-0.2} = 8.$$

Portanto o laboratório poderá voltar a ser utilizado com segurança, após 8 anos.

3.5 Lei de resfriamento de um corpo.

Conhecida também como lei de resfriamento de Newton, tem um processo idêntico ao processo de desintegração radioativa, ou seja um objeto aquecido, ao colocarmos em um ambiente mais frio, cuja a quantidade de massa, faz com que a temperatura do ambiente permaneça constante, sem sofrer alteração pela presença do objeto aquecido.

A lei de resfriamento de Newton afirma que, nesta condições a diferença de temperatura T, entre o objeto e o ambiente que o contém, decresce com uma taxa de variação proporcional à essa própria diferença. Como na desintegração radioativa, essa lei se traduz matematicamente da seguinte maneira:

$$\frac{dT}{dt} = -k \cdot (T - T_{mi}),$$

onde T = T(t) é a temperatura do corpo no instante t, T_{ma} é a temperatura constante do meio ambiente - T_{ma} é a diferença de temperatura, k é uma constante positiva que depende do material que constitui o corpo, o sinal negativo indica que a temperatura do corpo está diminuindo com o passar do tempo, com relação ao meio ambiente.

Esta equação pode ser escrita da seguinte maneira:

$$\frac{dT}{(T-T_m)} = -k \cdot dt.$$

Obtemos assim uma EDO separável, daí vamos integrar ambos membros desta equação, logo:

$$\int \frac{d\tau}{(\tau - \tau_m)} = \int -\mathbf{k} \cdot dt$$

Implica que,

$$\ln(T - T_m) = -k \cdot T + K_0.$$

Aplicando a exponencial em ambos os membros desta igualdade:

$$e^{\ln(T-T_{20})} = e^{\ln(-T+1)}$$

Assim,

$$T - T_m = e^{-k \cdot T} \cdot e^1$$

Daí consideremos **₹**¹= C, então :

$$T-T_m=e^{-k-T}$$
 C

Logo,

$$T(t) - T_m = e^{-k - T} - C$$

Portanto,

$$T(t) = e^{-k-T} \cdot C + T_{m}.$$

Sabemos que a temperatura inicial do corpo no instante $T(0) = T_0$, assim, substituindo t = 0 na solução da equação, obtemos:

$$T(0) = T_m + C \cdot e^{0} \Longrightarrow T_0 = T_m + C.$$

Então,

$$C = T_0 - T_m$$

Por fim iremos substituir a constante C na equação, obtendo a solução final,

$$T(t) = T_m + (T_0 - T_m) \cdot e^{-k - T}.$$

Exemplo:

Logo,

a) Às 2 horas da manhã na rua A, o corpo de um homem foi encontrado sem vida, aparentando ter aproximadamente 25 anos. Moradores relataram ter ouvido disparos de arma de fogo por volta das 22:00 como também as 00:00. A polícia já prendeu os suspeitos de terem efetuado os disparos e para sabermos o momento exato em que a vítima morreu, vamos aguardar a averiguação de um legista.

Solução: inicialmente vamos determinar a temperatura do corpo e do ambiente no instante da descoberta. Para isso vamos usar a equação final da temperatura em função do tempo. Vamos admitir que a temperatura do corpo seja 32°C quando foi descoberto e duas horas depois era de 26°C, a temperatura ambiente é de 22° C. Agora vamos calcular a constante K, sabemos que T=26°C, t=2h, t=20°C, t=20°C.

$$T(t) = T_{m} + (T_{0} - T_{m}) \cdot e^{-k - T}$$

$$26 = 22 + (32 - 22) \cdot e^{-2k}$$

$$4 = 10 \cdot e^{-2k}$$

$$\frac{4}{10} = e^{-2k}$$

$$0.4 = e^{-2k}$$

Aplicando ln em ambos os membros,

$$-2k = \ln 0.4$$

$$K = \frac{-0.916}{-2}$$
$$K = 0.458$$

Agora vamos descobrir o momento exato da morte. Vamos considerar a temperatura normal do corpo que é de 37°C no instante t=0 a temperatura ambiente é de 22°C. Calculemos o instante da morte (t), sabendo que, T=26°C, t=2h, $T_m=22$ °C, $T_0=32$,

$$T(t) = T_{m} + (T_{0} - T_{m}) \cdot e^{-k - T}$$

$$32 = 22 + (37 - 22) \cdot e^{-0.458 \cdot t}$$

$$\frac{30}{15} = e^{-0.458 \cdot t} = 2$$

$$\ln e^{-0.458 \cdot t} = \ln 2$$

$$-0,458 \cdot t = \ln 2$$

$$t = \frac{0.695}{0.458} \implies t = 1,513 \implies t = 90,78 \text{ minutos}$$

Como acharam o corpo as 2h e o instante de sua morte foi 90,78 minutos depois então a vítima morreu as 00:30 minutos.

Nas aplicações citadas, através dos exemplos é possível perceber como é feita a abordagem dos logaritmos em cada situação descrita. Com estas aplicações percebemos o quanto é importante para ciência este tema.

CONCLUSÃO

A proposta deste trabalho teve como objetivo realizar um estudo sobre os logaritmos, pois a finalidade desta pesquisa é ela ser utilizada como base e motivação para os estudantes que sentem dificuldades com relação a este tema, e ainda proporcionar uma abordagem diferente que facilite a compreensão dos alunos.

Com esse intuito buscamos apresentar as aplicações como uma maneira mais atraente e que sirva de estimulo para os estudos, procuramos explicar o assunto com uma linguagem matemática mais simples e precisa, ou seja, apresentamos suas propriedades seguidas de exemplos claros que e compreensíveis para que não existisse nenhum déficit por parte do leitor e que consequentemente acarretasse em uma má absorção, assim dificultaria a assimilação de como é introduzido os logaritmos em suas aplicações.

Portanto o proposito deste trabalho é explorar os logaritmos de uma maneira diferente, por meio de suas aplicações, explicando a sua importância como e onde é utilizado com a finalidade de expor o tema de uma forma simples para facilitar a compreensão.

.

REFERÊNCIAS

Antar, A, N. Luiz, J, P, S. Lapa, N. Luiz, S, C. **Noções de Matemática**. 2. Ed. Fortaleza: VestSller, 2009

Lages, E, L. **Logaritmos**. 2. ed. Rio de Janeiro: Graftex, 1996

Iezzi, G. Dolce, O. Murakami, C. Fundamentos de Matemática elementar 2. 3. Ed. São Paulo: Atual editora, 1977

Eves, H, E. Introdução à história da matemática: 5. Ed. Campinas: unicamp, 2011

Silva, Josiel Pereira, *Logaritmos e suas aplicações*. 2013. 46f. Dissertação de mestrado — Universidade federal de Campina Grande, Campina Grande, 2013.

Pecorrari, M, *Logaritmo e suas aplicações*. 2013. 96f. Dissertação de mestrado – Universidade estadual paulista Júlio de mesquita Filho, Rio claro, 2013.

WASHINGTON, K, C, V. *Logaritmo e suas aplicações.* 2011. 41f. trabalho de conclusão de curso – Universidade estadual da paraíba, Campina Grande, 2011.

MARTINS, Manoel Marino, *Logaritmo*. 2000. 45f. Trabalho de conclusão de curso – Universidade federal de Santa Catarina, Florianópolis, 2000.

SAMPAIO, JCV. John Napier, Henry Briggs e a invenção dos logaritmos. **Acesso em**, v. 20. ecalculo.if.usp.br/história/burgi.htm

Botelho, Wendel. **Sobre a datação por decaimento radioativo**. n. 5, P. 33-43, 2010 Biografia de Jobst Burgi e a sua contribuição para a matemática. Disponível em https://www.matplus.blogspot.com.br/2011/09/Biografia-de-Jobst-Burgi-e-a-sua-contribuição-para-a matemática > acesso em 09 de Abril.2018.

Fernandes, Cristiane Petry. Lei de resfriamento de newton.2014. Disponível em: http://pt.slideshare.net/cristianepetrylima/aula-de-edo-lei-do-resfriamento-de-newton/ acesso em 27 de setembro de 2018.

Santos, valdex. Os logaritmos e o estudo dos terremotos. 2016. Disponível em: < https://wadexifba.wordpress.com/eventos-2/os-logaritmos-e-o-estudo-dos-terremotos-escala-richter/ acesso em 27 de setembro de 2018.